1
|
Corona JC, Carreón-Trujillo S, González-Pérez R, Gómez-Bautista D, Vázquez-González D, Salazar-García M. Atomoxetine produces oxidative stress and alters mitochondrial function in human neuron-like cells. Sci Rep 2019; 9:13011. [PMID: 31506604 PMCID: PMC6737196 DOI: 10.1038/s41598-019-49609-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Atomoxetine (ATX) is a non-stimulant drug used in the treatment of attention-deficit/hyperactivity disorder (ADHD) and is a selective norepinephrine reuptake inhibitor. It has been shown that ATX has additional effects beyond the inhibition of norepinephrine reuptake, affecting several signal transduction pathways and alters gene expression. Here, we study alterations in oxidative stress and mitochondrial function in human differentiated SH-SY5Y cells exposed over a range of concentrations of ATX. We found that the highest concentrations of ATX in neuron-like cells, caused cell death and an increase in cytosolic and mitochondrial reactive oxygen species, and alterations in mitochondrial mass, membrane potential and autophagy. Interestingly, the dose of 10 μM ATX increased mitochondrial mass and decreased autophagy, despite the induction of cytosolic and mitochondrial reactive oxygen species. Thus, ATX has a dual effect depending on the dose used, indicating that ATX produces additional active therapeutic effects on oxidative stress and on mitochondrial function beyond the inhibition of norepinephrine reuptake.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico.
| | - Sonia Carreón-Trujillo
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Raquel González-Pérez
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Denise Gómez-Bautista
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Daniela Vázquez-González
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| |
Collapse
|
2
|
Dela Peña IJI, Botanas CJ, de la Peña JB, Custodio RJ, Dela Peña I, Ryoo ZY, Kim BN, Ryu JH, Kim HJ, Cheong JH. The Atxn7-overexpressing mice showed hyperactivity and impulsivity which were ameliorated by atomoxetine treatment: A possible animal model of the hyperactive-impulsive phenotype of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:311-319. [PMID: 30125623 DOI: 10.1016/j.pnpbp.2018.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/29/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder characterized by varying levels of hyperactivity, inattention, and impulsivity. Patients with ADHD are often classified as (1) predominantly hyperactive-impulsive, (2) predominantly inattentive, and (3) combined type. There is a growing interest in developing specific animal models that would recapitulate specific clinical forms of ADHD, with the goal of developing specific therapeutic strategies. In our previous study, we have identified Ataxin-7 (Atxn7) as a hyperactivity-associated gene. Here, we generated Atxn7 overexpressing (Atxn7 OE) mice to investigate whether the increased Atxn7 expression in the brain correlates with ADHD-like behaviors. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed overexpression of the Atxn7 gene and protein in the prefrontal cortex (PFC) and striatum (STR) of the Atxn7 OE mice. The Atxn7 OE mice displayed hyperactivity and impulsivity, but not inattention. Interestingly, treatment with the ADHD drug, atomoxetine (3 mg/kg, intraperitoneal), attenuated ADHD-like behaviors and reduced Atxn7 gene expression in the PFC and STR of these mice. These findings suggest that Atxn7 plays a role in the pathophysiology of ADHD, and that the Atxn7 OE mice can be used as an animal model of the hyperactive-impulsive phenotype of this disorder. Although confirmatory studies are warranted, the present study provides valuable information regarding the potential genetic underpinnings of ADHD.
Collapse
Affiliation(s)
- Irene Joy I Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, CA 92350, USA
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea
| | - Bung-Nyun Kim
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea.
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
3
|
Olbrich K, Costard L, Möser CV, Syhr KMJ, King-Himmelreich TS, Wolters MC, Schmidtko A, Geisslinger G, Niederberger E. Cleavage of SNAP-25 ameliorates cancer pain in a mouse model of melanoma. Eur J Pain 2016; 21:101-111. [PMID: 27301493 DOI: 10.1002/ejp.904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cancer pain is associated with increased pain sensitivity to noxious (hyperalgesia) and normally innocuous (allodynia) stimuli due to activation of nociceptors by tumour-derived mediators or tumour infiltration of nerves. The pain sensitization is accompanied by modifications in gene expression, but specifically regulated genes are largely unknown. The 25 kDa synaptosomal-associated protein (SNAP-25) is involved in chemical neurotransmission at the synaptic cleft. Its inhibition by Botulinum neurotoxin A (BoNT/A) has been associated with antinociceptive effects in migraine, inflammatory and neuropathic pain. However, its potential to reduce tumour-associated pain remains to be clarified. METHODS We applied a melanoma model of tumour pain in C57BL/6 mice and investigated SNAP-25 expression and regulation by qRT-PCR, Western Blot and immunofluorescence as well as tumour-associated mechanical allodynia with and without BoNT/A treatment. RESULTS We found increased SNAP-25 expression in the dorsal root ganglia and the sciatic nerve. Intraplantar injection of BoNT/A induced the cleavage of SNAP-25 in these tissues and was associated with decreased mechanical allodynia after therapeutic treatment at early and late stages of tumour pain while the tumour size was not affected. CONCLUSIONS Our data indicate that SNAP-25 plays a role in tumour pain but has no influence on the initiation and progression of skin cancer. Its cleavage inhibits the development of allodynia in the mouse melanoma model and might be useful as new therapeutic approach for the treatment of cancer pain. WHAT DOES THIS STUDY ADD?: SNAP-25 is differentially regulated during melanoma-induced tumour pain. Its cleavage by BoNT/A might be a suitable therapeutic option for tumour pain patients since tumour-associated pain can be strongly and significantly reduced after preventive and therapeutic BoNT/A treatment, respectively.
Collapse
Affiliation(s)
- K Olbrich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - L Costard
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - C V Möser
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - K M J Syhr
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - T S King-Himmelreich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - M C Wolters
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - A Schmidtko
- Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, Zentrum für Biomedizinische Ausbildung und Forschung, Witten, Germany
| | - G Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - E Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Wietecha LA, Clemow DB, Buchanan AS, Young JL, Sarkis EH, Findling RL. Atomoxetine Increased Effect over Time in Adults with Attention-Deficit/Hyperactivity Disorder Treated for up to 6 Months: Pooled Analysis of Two Double-Blind, Placebo-Controlled, Randomized Trials. CNS Neurosci Ther 2016; 22:546-57. [PMID: 26922462 PMCID: PMC5069588 DOI: 10.1111/cns.12533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/29/2022] Open
Abstract
Introduction Changes in the magnitude of efficacy throughout 26 weeks of atomoxetine treatment, along with impact of dosing, were evaluated in adults with ADHD from two randomized, double‐blind, placebo‐controlled studies. Aims Pooled placebo (n = 485) and atomoxetine (n = 518) patients, dosed 25, 40, 60, 80 (target dose), or 100 mg daily, were assessed. Change from baseline in Conners’ Adult ADHD Rating Scale–Investigator Rated Scale: Screening Version (CAARS) total ADHD symptoms score and Adult ADHD Investigator Symptom Rating Scale (AISRS) total score were analyzed using mixed‐model repeated measures, with least squares mean change, effect size, and response rate calculated at 1, 2, 4, 8, 12, 16, 22, and 26 weeks. Results Decreases on CAARS for atomoxetine‐ versus placebo‐treated patients were consistently statistically significantly greater at every time point beginning at one week (P ≤ 0.006, 0.28 effect size). By 4 weeks, comparison was −13.19 compared with −8.84 (P < 0.0001, 0.45 effect size). By 26 weeks, mean change was −15.42 versus −9.71 (0.52 effect size); increase in effect size over time was most pronounced in the 80 mg group (0.82 effect size). AISRS demonstrated similar results. Atomoxetine response rate (CAARS 50% decrease) continued to increase throughout 26 weeks. Conclusions Atomoxetine treatment in adults with ADHD was associated with small effect sizes after 4 weeks and moderate effect sizes by 6 months of treatment. The data support increased effect size and response rate over time during longer‐term treatment at target dose.
Collapse
Affiliation(s)
- Linda A Wietecha
- Eli Lilly and Company and/or one of its Subsidiaries, Indianapolis, IN, USA
| | - David B Clemow
- Eli Lilly and Company and/or one of its Subsidiaries, Indianapolis, IN, USA
| | - Andrew S Buchanan
- Eli Lilly and Company and/or one of its Subsidiaries, Indianapolis, IN, USA
| | - Joel L Young
- Rochester Center for Behavioral Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Robert L Findling
- Department of Psychiatry, Johns Hopkins University and the Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
5
|
Clemow DB, Bushe CJ. Atomoxetine in patients with ADHD: A clinical and pharmacological review of the onset, trajectory, duration of response and implications for patients. J Psychopharmacol 2015; 29:1221-30. [PMID: 26349559 DOI: 10.1177/0269881115602489] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews data providing new insight into the trajectory of response and maintenance of response of atomoxetine in the treatment of child and adult attention-deficit hyperactivity disorder (ADHD). This nonsystematic review includes: onset of action and duration of effect, response rate, effect size, time to optimal response and norepinephrine transporter blockade biomarker data. Atomoxetine can have an onset of action within 1-2 weeks of starting treatment, but there is an incrementally increasing response for up to 24 weeks or longer. Responder rates and effect sizes are similar to methylphenidate. Upon treatment discontinuation, relapse rates are lower than expected. In adults, 50% maintain their response for at least 6 months after stopping atomoxetine, following 6 months of treatment. Single-dose atomoxetine can provide 24-hour efficacy, despite a 5-hour plasma half-life. Hypotheses can be generated relating to neuroadaptive changes, to explain these findings. Atomoxetine has a trajectory of response that is incremental over a long period of time, with a greater than expected maintenance of response. This has implications for physician atomoxetine dosing and efficacy assessment, patient education and outcomes, and for clinical trial design and assessment of comparative efficacy with stimulant medications.
Collapse
|
6
|
Choi CS, Hong M, Kim KC, Kim JW, Yang SM, Seung H, Ko MJ, Choi DH, You JS, Shin CY, Bahn GH. Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring. Biomol Ther (Seoul) 2014; 22:406-13. [PMID: 25414770 PMCID: PMC4201219 DOI: 10.4062/biomolther.2014.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
Abstract
A substantial proportion of patients with autism spectrum disorder (ASD) display hyperactivity as a comorbid symptom. Exposure to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.
Collapse
Affiliation(s)
- Chang Soon Choi
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701 ; Department of Advanced Translational Medical Science, School of Medicine, Konkuk University, Seoul 143-701
| | - Minha Hong
- Department of Psychiatry, School of Medicine, Dankook University Hospital, Cheonan 330-715 ; Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Ki Chan Kim
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701 ; Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul 151-742
| | - Ji-Woon Kim
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701 ; Department of Advanced Translational Medical Science, School of Medicine, Konkuk University, Seoul 143-701
| | - Sung Min Yang
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701 ; Department of Advanced Translational Medical Science, School of Medicine, Konkuk University, Seoul 143-701
| | - Hana Seung
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701 ; Department of Advanced Translational Medical Science, School of Medicine, Konkuk University, Seoul 143-701
| | - Mee Jung Ko
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701 ; Department of Advanced Translational Medical Science, School of Medicine, Konkuk University, Seoul 143-701
| | - Dong-Hee Choi
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701
| | - Jueng Soo You
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701
| | - Chan Young Shin
- Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Seoul 143-701 ; Department of Advanced Translational Medical Science, School of Medicine, Konkuk University, Seoul 143-701
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| |
Collapse
|
7
|
Németh N, Kovács-Nagy R, Székely A, Sasvári-Székely M, Rónai Z. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS One 2013; 8:e84207. [PMID: 24391914 PMCID: PMC3877256 DOI: 10.1371/journal.pone.0084207] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769) and two SNPs in the 3' UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901) using PCR-RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T-T 3' UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3' UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels.
Collapse
Affiliation(s)
- Nóra Németh
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Réka Kovács-Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Székely
- Institute of Psychology, Eotvos Lorand University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Lasky-Su J. A network medicine approach to psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:579-86. [PMID: 24132892 DOI: 10.1002/ajmg.b.32191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/11/2013] [Indexed: 12/14/2022]
Abstract
The major psychiatric disorders are complex in nature, meaning that they are influenced by multiple environmental and genetic exposures that perturb the intricate cellular network, resulting in disease. In general, psychiatric diseases are highly heritable but also have important environmental etiologies. Environmental influences include neonatal exposures, social environments, psychological mechanisms, and abnormal functioning of the neurotransmitter system. Molecular influences can be identified using many data types including genomics, epigenomics, transcriptomics, metabolomics, and proteomics. The emerging field of network medicine offers a new approach to explore the complexities of disease development in a framework that considers a holistic, rather than a reductionist viewpoint. In this review we explain a general framework of how the network medicine approach can provide valuable insight into understanding important molecular mechanisms that contribute to the pathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Jessica Lasky-Su
- Department of Network Medicine, Channing Laboratories, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Németh N, Kerékgyártó M, Sasvári-Székely M, Rónai Z, Guttman A. Rapid identification of human SNAP-25 transcript variants by a miniaturized capillary electrophoresis system. Electrophoresis 2013; 35:379-84. [DOI: 10.1002/elps.201300221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Nóra Németh
- Department of Medical Chemistry; Molecular Biology and Pathobiochemistry, Semmelweis University; Budapest Hungary
| | - Márta Kerékgyártó
- Horváth Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry; Molecular Biology and Pathobiochemistry, Semmelweis University; Budapest Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry; Molecular Biology and Pathobiochemistry, Semmelweis University; Budapest Hungary
| | - András Guttman
- Horváth Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
- MTA-PE Translational Glycomics Group; University of Pannonia; Veszprém Hungary
| |
Collapse
|
10
|
Pazvantoğlu O, Güneş S, Karabekiroğlu K, Yeğin Z, Erenkuş Z, Akbaş S, Sarısoy G, Korkmaz IZ, Böke O, Bağcı H, Sahin AR. The relationship between the presence of ADHD and certain candidate gene polymorphisms in a Turkish sample. Gene 2013; 528:320-7. [PMID: 23872233 DOI: 10.1016/j.gene.2013.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/17/2013] [Accepted: 07/02/2013] [Indexed: 01/29/2023]
Abstract
Due to the high heritability of attention-deficit hyperactivity disorder (ADHD), parents of children with ADHD appear to represent a good sample group for investigating the genetics of the disorder. The aim of this study was to investigate the association between ADHD and six polymorphisms in five candidate genes [5-HT2A (rs6311), NET1 (rs2242447), COMT (rs4818), NTF3 (rs6332), SNAP-25 (rs3746544) and (rs1051312)]. We included 228 parents of children diagnosed with ADHD and 109 healthy parents as the control group. The polymorphisms were genotyped using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) assays and analyzed using the chi-square test and the multinomial logit model. SNAP-25 (rs3746544) polymorphism was associated with loading for ADHD, while 5-HT2A (rs6311) and NET1 (rs2242447) polymorphisms were associated with ADHD. On the other hand, there was no significant association between the SNAP-25 (rs1051312), NTF3 (rs6332), or COMT (rs4818) gene polymorphisms and ADHD. In addition, we found that even if variation in the SNAP-25 gene alone does not affect the phenotype, it may nevertheless lead to the emergence of a clinical ADHD picture in the presence of other genetic factors. Our findings suggest that a combination of NET1 (rs2242447) and SNAP-25 (rs3746544) is a risk factor for ADHD. Problems associated with the noradrenergic and serotonergic systems and SNAP-25 may play a role, both alone and in interaction with one another, in the pathophysiological mechanisms of ADHD.
Collapse
Affiliation(s)
- Ozan Pazvantoğlu
- Department of Psychiatry, Ondokuz Mayis University, School of Medicine, Samsun, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|