1
|
Cellot G, Di Mauro G, Ricci C, Tiribelli C, Bellarosa C, Ballerini L. Bilirubin Triggers Calcium Elevations and Dysregulates Giant Depolarizing Potentials During Rat Hippocampus Maturation. Cells 2025; 14:172. [PMID: 39936964 PMCID: PMC11817189 DOI: 10.3390/cells14030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Neonatal hyperbilirubinemia may result in long-lasting motor, auditory and learning impairments. The mechanisms responsible for the localization of unconjugated bilirubin (UCB) to specific brain areas as well as those involved in potentially permanent central nervous system (CNS) dysfunctions are far from being clear. One area of investigation includes exploring how hyperbilirubinemia determines neuronal alterations predisposing to neurodevelopmental disorders. We focused on the hippocampus and pyramidal cell dysregulation of calcium homeostasis and synaptic activity, with a particular focus on early forms of correlated network activity, i.e., giant depolarizing potentials (GDPs), crucially involved in shaping mature synaptic networks. We performed live calcium imaging and patch clamp recordings from acute hippocampal slices isolated from wild-type rats exposed to exogenous high bilirubin concentration. We then explored the impact of endogenous bilirubin accumulation in hippocampal slices isolated from a genetic model of hyperbilirubinemia, i.e., Gunn rats. Our data show in both models an age-dependent dysregulation of calcium dynamics accompanied by severe alterations in GDPs, which were strongly reduced in hippocampal slices of hyperbilirubinemic rats, where the expression of GABAergic neurotransmission markers was also altered. We propose that hyperbilirubinemia damages neurons and affects the refinement of GABAergic synaptic circuitry during a critical period of hippocampal development.
Collapse
Affiliation(s)
- Giada Cellot
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| | - Giuseppe Di Mauro
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| | - Chiara Ricci
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation, Bldg Q-AREA Science Park Basovizza, SS14 Km 163.5, 34149 Trieste, Italy;
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation, Bldg Q-AREA Science Park Basovizza, SS14 Km 163.5, 34149 Trieste, Italy;
| | - Laura Ballerini
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| |
Collapse
|
2
|
Zhang Y, Li S, Li L, Huang H, Fu Z, Hua Z. Inhibition of Microglial Activation Ameliorates Inflammation, Reduced Neurogenesis in the hippocampus, and Impaired Brain Function in a Rat Model of Bilirubin Encephalopathy. J Neuroimmune Pharmacol 2024; 19:23. [PMID: 38775885 DOI: 10.1007/s11481-024-10124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/13/2024] [Indexed: 01/15/2025]
Abstract
Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1β, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Siyu Li
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ling Li
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongmei Huang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Ziyu Hua
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
3
|
Rezaei A, Moqadami A, Khalaj-Kondori M. Minocycline as a prospective therapeutic agent for cancer and non-cancer diseases: a scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2835-2848. [PMID: 37991540 DOI: 10.1007/s00210-023-02839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Minocycline is an FDA-approved secondary-generation tetracycline antibiotic. It is a synthetic antibiotic having many biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective functions. This study discusses the pharmacological mechanisms of preventive and therapeutic effects of minocycline. Specifically, it provides a comprehensive overview of the molecular pathways by which minocycline acts on the different cancers, including ovarian, breast, glioma, colorectal, liver, pancreatic, lung, prostate, melanoma, head and neck, leukemia, and non-cancer diseases such as Alzheimer's disease, Parkinson, schizophrenia, multiple sclerosis, Huntington, polycystic ovary syndrome, and coronavirus disease 19. Minocycline may be a potential medication for these disorders due to its strong blood-brain barrier penetrance. It is also widely accepted as a specific medication, has a well-known side-effect characteristic, is reasonably priced, making it appropriate for continuous use in managing diseases, and has been demonstrated as an oral approach because it is effectively absorbed and accomplished almost all of the body's parts.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Wang Y, Zhang X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res 2024; 332:115708. [PMID: 38171169 DOI: 10.1016/j.psychres.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Schizophrenia is a devastating psychiatric disorder that has detrimental effects on a significant portion of the global population. Electroconvulsive therapy (ECT), as a safe and effective physical therapy for schizophrenia, has demonstrated the ability to rapidly improve both positive and negative symptoms. Despite being used to treat schizophrenia for over 80 years, the therapeutic mechanisms of ECT are still in the early stages of exploration. Evidence has suggested that immune inflammation contributes to the pathogenesis of schizophrenia by interacting with neurotransmitters, neurodevelopment, and neurodegeneration. Given the importance of ECT as a fast-acting physical therapy for schizophrenia, gaining a deeper understanding of the role of immune inflammation may lead to developing innovative therapeutic approaches. This review summarized existing research that examined changes in peripheral inflammation following ECT in schizophrenia patients, and the effects of electroconvulsive stimulation (ECS) on neuroinflammation in animal studies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Rodrigues-Neves AC, Ambrósio AF, Gomes CA. Microglia sequelae: brain signature of innate immunity in schizophrenia. Transl Psychiatry 2022; 12:493. [PMID: 36443303 PMCID: PMC9705537 DOI: 10.1038/s41398-022-02197-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment, which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment, it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors - genetic, developmental, epigenetic, and environmental - have been associated with disease onset and progression, giving rise to the proposal of different pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia - innate immune cells of the central nervous system, critically involved in brain development - have captured attention as cellular players. Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes and may drive the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- A. Catarina Rodrigues-Neves
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - António. F. Ambrósio
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
6
|
Normalizing hyperactivity of the Gunn rat with bilirubin-induced neurological disorders via ketanserin. Pediatr Res 2022; 91:556-564. [PMID: 33790408 DOI: 10.1038/s41390-021-01446-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Severe neonatal hyperbilirubinemia has been known to cause the clinical syndrome of kernicterus and a milder one the syndrome of bilirubin-induced neurologic dysfunction (BIND). BIND clinically manifests itself after the neonatal period as developmental delay, cognitive impairment, and related behavioral and psychiatric disorders. The complete picture of BIND is not clear. METHODS The Gunn rat is a mutant strain of the Wistar rat with the BIND phenotype, and it demonstrates abnormal behavior. We investigated serotonergic dysfunction in Gunn rats by pharmacological analyses and ex vivo neurochemical analyses. RESULTS Ketanserin, the 5-HT2AR antagonist, normalizes hyperlocomotion of Gunn rats. Both serotonin and its metabolites in the frontal cortex of Gunn rats were higher in concentrations than in control Wistar rats. The 5-HT2AR mRNA expression was downregulated without alteration of the protein abundance in the Gunn rat frontal cortex. The TPH2 protein level in the Gunn rat raphe region was significantly higher than that in the Wistar rat. CONCLUSIONS It would be of value to be able to postulate that a therapeutic strategy for BIND disorders would be the restoration of brain regions affected by the serotonergic dysfunction to normal operation to prevent before or to normalize after onset of BIND manifestations. IMPACT We demonstrated serotonergic dysregulation underlying hyperlocomotion in Gunn rats. This finding suggests that a therapeutic strategy for bilirubin-induced neurologic dysfunction (BIND) would be the restoration of brain regions affected by the serotonergic dysfunction to normal operation to prevent before or to normalize after the onset of the BIND manifestations. Ketanserin normalizes hyperlocomotion of Gunn rats. To our knowledge, this is the first study to demonstrate a hyperlocomotion link to serotonergic dysregulation in Gunn rats.
Collapse
|
7
|
IGF1 Gene Therapy Reversed Cognitive Deficits and Restored Hippocampal Alterations After Chronic Spinal Cord Injury. Mol Neurobiol 2021; 58:6186-6202. [PMID: 34463925 DOI: 10.1007/s12035-021-02545-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
The hippocampus is implicated in the generation of memory and learning, processes which involve extensive neuroplasticity. The generation of hippocampal adult-born neurons is particularly regulated by glial cells of the neurogenic niche and the surrounding microenvironment. Interestingly, recent evidence has shown that spinal cord injury (SCI) in rodents leads to hippocampal neuroinflammation, neurogenesis reduction, and cognitive impairments. In this scenario, the aim of this work was to evaluate whether an adenoviral vector expressing IGF1 could reverse hippocampal alterations and cognitive deficits after chronic SCI. SCI caused neurogenesis reduction and impairments of both recognition and working memories. We also found that SCI increased the number of hypertrophic arginase-1 negative microglia concomitant with the decrease of the number of ramified surveillance microglia in the hilus, molecular layer, and subgranular zone of the dentate gyrus. RAd-IGF1 treatment restored neurogenesis and improved recognition and working memory impairments. In addition, RAd-IGF1 gene therapy modulated differentially hippocampal regions. In the hilus and molecular layer, IGF1 gene therapy recovered the number of surveillance microglia coincident with a reduction of hypertrophic microglia cell number. However, in the neurogenic niche, IGF1 reduced the number of ramified microglia and increased the number of hypertrophic microglia, which as a whole expressed arginase-1. In summary, RAd-IGF1 gene therapy might surge as a new therapeutic strategy for patients with hippocampal microglial alterations and cognitive deficits such as those with spinal cord injury and other neurodegenerative diseases.
Collapse
|
8
|
Li S, Huang H, Wei Q, He C, Feng J, Wang Y, Li M, Zhang Q, Xia X, Hua Z. Depression of Pyroptosis by Inhibiting Caspase-1 Activation Improves Neurological Outcomes of Kernicterus Model Rats. ACS Chem Neurosci 2021; 12:2929-2939. [PMID: 34296848 DOI: 10.1021/acschemneuro.1c00287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kernicterus is a severe complication of extreme neonatal hyperbilirubinemia. Prolonged exposure to high-level unconjugated bilirubin (UCB) directly damages brain tissue. Neuroinflammation is believed to contribute to UCB-induced neurotoxicity. Pyroptosis has been as a highly inflammatory form of programmed cell death. Therefore, this study aimed to explore whether pyroptosis was involved in the pathogenesis of UCB neurotoxicity in kernicterus model rats. VX-765, a specific inhibitor of caspase-1, was intraperitoneally administered to the model rats to observe its effects on the short-term and long-term outcomes of the model animals at the molecular, cellular, morphological, and behavioral levels. The results indicated that UCB significantly induced the activation of caspase-1 and gasdermin D(GSDMD), and VX-765 inhibited caspase-1-GSDMD pathway. Compared with those of the UCB group and the vehicle+UCB group, VX-765-treated rats released lower levels of IL-1β and IL-18. Furthermore, H&E and TUNEL staining showed that nerve cells in the VX-765-treated group were better preserved and had less DNA fragmentation. Most importantly, VX-765 improved both the short-term and long-term neurological functions of kernicterus model rats. This study demonstrated that pyroptosis was involved in the pathogenesis of kernicterus through caspase-1 activation, which could be inhibited by VX-765, exerting a neuroprotective effect in kernicterus model rats.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Hongmei Huang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Qian Wei
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Chunmei He
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Jie Feng
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Yao Wang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Mengwen Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Qiannan Zhang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Xuhua Xia
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Ziyu Hua
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| |
Collapse
|
9
|
Chaves Filho AJM, Mottin M, Soares MVR, Jucá PM, Andrade CH, Macedo DS. Tetracyclines, a promise for neuropsychiatric disorders: from adjunctive therapy to the discovery of new targets for rational drug design in psychiatry. Behav Pharmacol 2021; 32:123-141. [PMID: 33595954 DOI: 10.1097/fbp.0000000000000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Major mental disorders, such as schizophrenia, bipolar disorder, and major depressive disorder, represent the leading cause of disability worldwide. Nevertheless, the current pharmacotherapy has several limitations, and a large portion of patients do not respond appropriately to it or remain with disabling symptoms overtime. Traditionally, pharmacological interventions for psychiatric disorders modulate dysfunctional neurotransmitter systems. In the last decades, compelling evidence has advocated for chronic inflammatory mechanisms underlying these disorders. Therefore, the repurposing of anti-inflammatory agents has emerged as an attractive therapeutic tool for mental disorders. Minocycline (MINO) and doxycycline (DOXY) are semisynthetic second-generation tetracyclines with neuroprotective and anti-inflammatory properties. More recently, the most promising results obtained in clinical trials using tetracyclines for major psychiatric disorders were for schizophrenia. In a reverse translational approach, tetracyclines inhibit microglial reactivity and toxic inflammation by mechanisms related to the inhibition of nuclear factor kappa B signaling, cyclooxygenase 2, and matrix metalloproteinases. However, the molecular mechanism underlying the effects of these tetracyclines is not fully understood. Therefore, the present review sought to summarize the latest findings of MINO and DOXY use for major psychiatric disorders and present the possible targets to their molecular and behavioral effects. In conclusion, tetracyclines hold great promise as (ready-to-use) agents for being used as adjunctive therapy for human neuropsychiatric disorders. Hence, the understanding of their molecular mechanisms may contribute to the discovery of new targets for the rational drug design of novel psychoactive agents.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Hayashida M, Hashioka S, Hayashida K, Miura S, Tsuchie K, Araki T, Izuhara M, Kanayama M, Otsuki K, Nagahama M, Jaya MA, Arauchi R, Wake R, Oh-Nishi A, Horiguchi J, Miyaoka T, Inagaki M, Morita E. Low Serum Levels of Fibroblast Growth Factor 2 in Gunn Rats: A Hyperbilirubinemia Animal Model of Schizophrenic Symptoms. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:503-508. [PMID: 32729434 DOI: 10.2174/1871527319999200729153907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fibroblast Growth Factor (FGF) 2 (also referred to as basic FGF) is a multifunctional growth factor that plays a pivotal role in the pro-survival, pro-migration and prodifferentiation of neurons. METHOD Because alterations in FGF2 levels are suggested to contribute to the pathogenesis of schizophrenia, we investigated serum levels of FGF2 in the Gunn rat, a hyperbilirubinemia animal model of schizophrenic symptoms. RESULTS The enzyme-linked immunosorbent assay showed that the serum levels of FGF2 in Gunn rats were 5.09 ± 0.236 pg/mL, while those in the normal strain Wistar rats, serum levels were 11.90 ± 2.142 pg/mL. The serum FGF2 levels in Gunn rats were significantly lower than those in Wistar rats. We also measured serum levels of Unconjugated Bilirubin (UCB) and found a significant negative correlation between UCB and FGF2 in terms of serum levels in all the rats studied. CONCLUSION Since it is known that FGF2 regulates dopaminergic neurons and have antineuroinflammatory effects, our finding suggests that low FGF2 levels may contribute to the pathogenesis of schizophrenia, in which imbalanced dopamin-ergic signaling and neuroinflammation are supposed to play certain roles.
Collapse
Affiliation(s)
- Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Kenji Hayashida
- Division of Plastic Surgery, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Shoko Miura
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Keiko Tsuchie
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Tomoko Araki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Muneto Izuhara
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Misako Kanayama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Koji Otsuki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Michiharu Nagahama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Muhammad Alim Jaya
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Ryosuke Arauchi
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Rei Wake
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Arata Oh-Nishi
- Department of Immuno-Neuropsychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Jun Horiguchi
- Department of Immuno-Neuropsychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Tsuyoshi Miyaoka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Matsue, Japan
| |
Collapse
|
11
|
Electroconvulsive shock restores the decreased coverage of brain blood vessels by astrocytic endfeet and ameliorates depressive-like behavior. J Affect Disord 2019; 257:331-339. [PMID: 31302522 DOI: 10.1016/j.jad.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Although growing evidence indicates that ECT affects astrocytes, the exact mechanisms of the therapeutic effect of ECT are still unknown. Astrocytic endfeet express the water channel aquaporin (AQP) 4 abundantly and ensheath brain blood vessels to form gliovascular units. It has been shown that the coverage of blood vessels by AQP4-immunostained endfeet is decreased in the prefrontal cortex (PFC) of patients with major depression. This study was made to determine whether ECT restores the astrocytic coverage of blood vessels with amelioration of depressive symptoms. METHODS After electroconvulsive shock (ECS) administration to rats, the forced swimming test (FST) and Y-maze test were performed. Subsequently, immunofluorescence analysis was conducted to measure the coverage of blood vessels by astrocytic endfeet in the PFC and hippocampus by using the endothelial cell marker lectin and anti-AQP4 antibody. We also performed Western blot to examine the effects of ECS on the hippocampal expression of AQP4 and the tight junction molecule claudin-5. RESULTS Gunn rats showed learned helplessness and impaired spatial working memory, compared to normal control Wistar rats. ECS significantly improved the depressive-like behavior. Gunn rats showed a decrease in astrocytic coverage of blood vessels, that was significantly increased by ECS. ECS significantly increased expression of AQP4 and claudin-5 in Gunn rats. CONCLUSIONS ECS increased the reduced coverage of blood vessels by astrocytic endfeet in the mPFC and hippocampus with amelioration of depressive-like behavior. Therefore, therapeutic mechanism of ECT may involve restoration of the impaired gliovascular units by increasing the astrocytic-endfoot coverage of blood vessels.
Collapse
|
12
|
Hayashida M, Miyaoka T, Tsuchie K, Araki T, Izuhara M, Miura S, Kanayama M, Ohtsuki K, Nagahama M, Azis IA, Abdullah RA, Jaya MA, Arauchi R, Hashioka S, Wake R, Tsumori T, Horiguchi J, Oh-Nishi A, Inagaki M. Parvalbumin-positive GABAergic interneurons deficit in the hippocampus in Gunn rats: A possible hyperbilirubinemia-induced animal model of schizophrenia. Heliyon 2019; 5:e02037. [PMID: 31321330 PMCID: PMC6612903 DOI: 10.1016/j.heliyon.2019.e02037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/18/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
A reduction of GABAergic markers in postmortem tissue is consistently found in schizophrenia. Importantly, these alterations in GABAergic neurons are not global, which means they are more prevalent among distinct subclasses of interneurons, including those that express the calcium binding protein parvalbumin. A decreased expression of parvalbumin in the hippocampus is a consistent observation not only in postmortem human schizophrenia patients, but also in a diverse number of rodent models of the disease. Meanwhile, previously we reported that the congenital hyperbilirubinemia model rats (Gunn rats), which is a mutant of the Wistar strain, showed behavioral abnormalities, for instance, hyperlocomotor activity, deficits of prepulse inhibition, inappropriate social interaction, impaired recognition memory similar with several rodent models of schizophrenia. Several animal studies linked the importance of palvalbumin in relation to abnormal hippocampal activity and schizophrenia-like behavior. Here, we show that parvalbumin positive cell density was significantly lower in the CA1, CA3 and the total hippocampus of Gunn rats (congenital hyperbilirubinemia model rats) compared to Wistar control rats. The correlations between serum UCB levels and loss of PV expression in the hippocampus were also detected. The decreases in the PV-expression in the hippocampus might suggest an association of the behavioral abnormalities as schizophrenia-like behaviors of Gunn rats, compared to the Wistar control rats.
Collapse
Affiliation(s)
- Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Tsuyoshi Miyaoka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Keiko Tsuchie
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Tomoko Araki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Muneto Izuhara
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Shoko Miura
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Misako Kanayama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Koji Ohtsuki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Michiharu Nagahama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | | | | | - Muhammad Alim Jaya
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Ryosuke Arauchi
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Rei Wake
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| | - Toshiko Tsumori
- Department of Nursing, Faculty of Health and Welfare, Prefectural University of Hiroshima, Japan
| | - Jun Horiguchi
- Division of Immune-Neuropsychiatry, Faculty of Medicine, Shimane University, Japan
| | - Arata Oh-Nishi
- Division of Immune-Neuropsychiatry, Faculty of Medicine, Shimane University, Japan
- RESVO Inc., Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Japan
| |
Collapse
|
13
|
Microglial Activation and Psychotic Disorders: Evidence from Pre-clinical and Clinical Studies. Curr Top Behav Neurosci 2019; 44:161-205. [PMID: 30828767 DOI: 10.1007/7854_2018_81] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clinical and pre-clinical studies have demonstrated an important role of neuroinflammation in the etiology of schizophrenia. While the underlying mechanisms remain poorly understood, there are some studies demonstrating an association between maternal immune activation and behavioral changes in adult offspring and identifying early life infection as a trigger for schizophrenia; in addition, inflammatory markers were found to be increased in the schizophrenic post-mortem brain. During maternal immune activation, pro-inflammatory mediators such as cytokines, chemokines, antibodies, and acute-phase proteins are released in the maternal bloodstream, thus increasing the permeability of the placental barrier and the fetal blood-brain barrier, allowing the inflammatory mediators to enter the fetal brain. In the central nervous system (CNS), these pro-inflammatory mediators are able to activate microglial cells that can release pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6. As a consequence, circulating immune cells may infiltrate the brain, increasing cytokine levels and releasing antibodies that aggravate the neuroinflammation. Neuroinflammation may affect processes that are pivotal for normal brain maturation such as myelination, synaptic pruning, and neuronal remodeling. Microglial cell activation and pro-inflammatory mediators have been extensively studied in schizophrenic post-mortem brain samples. Some results of these investigations demonstrated an increase in microglial activation markers, cytokines, and chemokines in post-mortem brain samples from individuals with schizophrenia. In contrast, there are studies that have demonstrated low levels of microglial activation makers in the schizophrenic post-mortem brain. Thus, based on the important role of neuroinflammation as a trigger in the development of schizophrenia, this chapter aims (1) to enumerate evidence of neuroinflammation and microglial activation from pre-clinical schizophrenia models, (2) to show links between schizophrenia and neuroinflammation in clinical studies, and (3) to identify mechanisms by which microglial activation may influence in the development of schizophrenia.
Collapse
|
14
|
Holubiec MI, Romero JI, Suárez J, Portavella M, Fernández-Espejo E, Blanco E, Galeano P, de Fonseca FR. Palmitoylethanolamide prevents neuroinflammation, reduces astrogliosis and preserves recognition and spatial memory following induction of neonatal anoxia-ischemia. Psychopharmacology (Berl) 2018; 235:2929-2945. [PMID: 30058012 DOI: 10.1007/s00213-018-4982-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
RATIONAL Neonatal anoxia-ischemia (AI) particularly affects the central nervous system. Despite the many treatments that have been tested, none of them has proven to be completely successful. Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are acylethanolamides that do not bind to CB1 or CB2 receptors and thus they do not present cannabinoid activity. These molecules are agonist compounds of peroxisome proliferator-activator receptor alpha (PPARα), which modulates the expression of different genes that are related to glucose and lipid metabolism, inflammation, differentiation and proliferation. OBJECTIVE In the present study, we analyzed the effects that the administration of PEA or OEA, after a neonatal AI event, has over different areas of the hippocampus. METHODS To this end, 7-day-old rats were subjected to AI and then treated with vehicle, OEA (2 or 10 mg/kg) or PEA (2 or 10 mg/kg). At 30 days of age, animals were subjected to behavioral tests followed by immunohistochemical studies. RESULTS Results showed that neonatal AI was associated with decreased locomotion, as well as recognition and spatial memory impairments. Furthermore, these deficits were accompanied with enhanced neuroinflammation and astrogliosis, as well as a decreased PPARα expression. PEA treatment was able to prevent neuroinflammation, reduce astrogliosis and preserve cognitive functions. CONCLUSIONS These results indicate that the acylethanolamide PEA may play an important role in the mechanisms underlying neonatal AI, and it could be a good candidate for further studies regarding neonatal AI treatments.
Collapse
Affiliation(s)
- Mariana I Holubiec
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Romero
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain
| | - Manuel Portavella
- Laboratorio de Conducta Animal y Neurociencia, Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, C/Camilo José Cela s/n, 41018, Sevilla, Spain
| | - Emilio Fernández-Espejo
- Laboratorio de Neurofisiología y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | - Eduardo Blanco
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation (IRBLleida), University of Lleida, Av. Alcalde Rovira Roure 80, 25198, Lleida, Spain
| | - Pablo Galeano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain.
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain.
| |
Collapse
|
15
|
Arauchi R, Hashioka S, Tsuchie K, Miyaoka T, Tsumori T, Limoa E, Azis IA, Oh‐Nishi A, Miura S, Otsuki K, Kanayama M, Izuhara M, Nagahama M, Kawano K, Araki T, Liaury K, Abdullah RA, Wake R, Hayashida M, Inoue K, Horiguchi J. Gunn rats with glial activation in the hippocampus show prolonged immobility time in the forced swimming test and tail suspension test. Brain Behav 2018; 8:e01028. [PMID: 29953737 PMCID: PMC6085916 DOI: 10.1002/brb3.1028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Recent studies imply that glial activation plays a role in the pathogenesis of psychiatric disorders, such as schizophrenia and major depression. We previously demonstrated that Gunn rats with hyperbilirubinemia show congenital gliosis and schizophrenia-like behavior. METHODS As it has been suggested that major depression involves glial activation associated with neuroinflammation, we examined whether Gunn rats show depression-like behavior using the forced swimming test (FST) and the tail suspension test (TST). In addition, we quantitatively evaluated both microgliosis and astrogliosis in the hippocampus of Gunn rats using immunohistochemistry analysis of the microglial marker ionized calcium-binding adaptor molecule (Iba) 1 and the astrocytic marker S100B. RESULTS Both the FST and TST showed that immobility time of Gunn rats was significantly longer than that of normal control Wistar rats, indicating that Gunn rats are somewhat helpless, a sign of depression-like behavior. In the quantification of immunohistochemical analysis, Iba1immunoreactivity in the dentate gyrus (DG), cornu ammonis (CA) 1, and CA3 and the number of Iba1-positive cells in the CA1 and CA3 were significantly increased in Gunn rats compared to Wistar rats. S100B immunoreactivity in the DG, CA1, and CA3 and the number of S100B-positive cells in the DG and CA3 were significantly increased in Gunn rats compared to Wistar rats. CONCLUSION Our findings suggest that both microglia and astrocyte are activated in Gunn rats and their learned helplessness could be related to glial activation.
Collapse
Affiliation(s)
| | | | - Keiko Tsuchie
- Department of PsychiatryShimane UniversityIzumoJapan
| | | | - Toshiko Tsumori
- Department of NursingPrefectural University of HiroshimaMiharaJapan
| | - Erlyn Limoa
- Department of PsychiatryShimane UniversityIzumoJapan
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | - Ilhamuddin A. Azis
- Department of PsychiatryShimane UniversityIzumoJapan
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | | | - Shoko Miura
- Department of PsychiatryShimane UniversityIzumoJapan
| | - Koji Otsuki
- Department of PsychiatryShimane UniversityIzumoJapan
| | | | | | | | | | - Tomoko Araki
- Department of PsychiatryShimane UniversityIzumoJapan
| | - Kristian Liaury
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | - Rostia A. Abdullah
- Department of PsychiatryShimane UniversityIzumoJapan
- Department of PsychiatryHasanuddin UniversityMakassarSouth SulawesiIndonesia
| | - Rei Wake
- Department of PsychiatryShimane UniversityIzumoJapan
| | | | - Ken Inoue
- Health Service CenterKochi UniversityKochiJapan
| | - Jun Horiguchi
- Department of PsychiatryShimane UniversityIzumoJapan
| |
Collapse
|
16
|
|
17
|
Vodret S, Bortolussi G, Iaconcig A, Martinelli E, Tiribelli C, Muro AF. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav Immun 2018; 70:166-178. [PMID: 29458193 DOI: 10.1016/j.bbi.2018.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023] Open
Abstract
All pre-term newborns and a high proportion of term newborns develop neonatal jaundice. Neonatal jaundice is usually a benign condition and self-resolves within few days after birth. However, a combination of unfavorable complications may lead to acute hyperbilirubinemia. Excessive hyperbilirubinemia may be toxic for the developing nervous system leading to severe neurological damage and death by kernicterus. Survivors show irreversible neurological deficits such as motor, sensitive and cognitive abnormalities. Current therapies rely on the use of phototherapy and, in unresponsive cases, exchange transfusion, which is performed only in specialized centers. During bilirubin-induced neurotoxicity different molecular pathways are activated, ranging from oxidative stress to endoplasmic reticulum (ER) stress response and inflammation, but the contribution of each pathway in the development of the disease still requires further investigation. Thus, to increase our understanding of the pathophysiology of bilirubin neurotoxicity, encephalopathy and kernicterus, we pharmacologically modulated neurodegeneration and neuroinflammation in a lethal mouse model of neonatal hyperbilirubinemia. Treatment of mutant mice with minocycline, a second-generation tetracycline with anti-inflammatory and neuroprotective properties, resulted in a dose-dependent rescue of lethality, due to reduction of neurodegeneration and neuroinflammation, without affecting plasma bilirubin levels. In particular, rescued mice showed normal motor-coordination capabilities and behavior, as determined by the accelerating rotarod and open field tests, respectively. From the molecular point of view, rescued mice showed a dose-dependent reduction in apoptosis of cerebellar neurons and improvement of dendritic arborization of Purkinje cells. Moreover, we observed a decrease of bilirubin-induced M1 microglia activation at the sites of damage with a reduction in oxidative and ER stress markers in these cells. Collectively, these data indicate that neurodegeneration and neuro-inflammation are key factors of bilirubin-induced neonatal lethality and neuro-behavioral abnormalities. We propose that the application of pharmacological treatments having anti-inflammatory and neuroprotective effects, to be used in combination with the current treatments, may significantly improve the management of acute neonatal hyperbilirubinemia, protecting from bilirubin-induced neurological damage and death.
Collapse
Affiliation(s)
- Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy.
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Elena Martinelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato, AREA Science Park, Campus Basovizza, Trieste, Italy
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy.
| |
Collapse
|
18
|
Sobue A, Ito N, Nagai T, Shan W, Hada K, Nakajima A, Murakami Y, Mouri A, Yamamoto Y, Nabeshima T, Saito K, Yamada K. Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia 2018; 66:1034-1052. [PMID: 29380419 DOI: 10.1002/glia.23299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
In the central nervous system, major histocompatibility complex class I (MHCI) molecules are mainly expressed in neurons, and neuronal MHCI have roles in synapse elimination and plasticity. However, the pathophysiological significance of astroglial MHCI remains unclear. We herein demonstrate that MHCI expression is up-regulated in astrocytes in the medial prefrontal cortex (mPFC) following systemic immune activation by an intraperitoneal injection of polyinosinic-polycytidylic acid (polyI:C) or hydrodynamic interferon (IFN)-γ gene delivery in male C57/BL6J mice. In cultured astrocytes, MHCI/H-2D largely co-localized with exosomes. To investigate the role of astroglial MHCI, H-2D, or sH-2D was expressed in the mPFC of male C57/BL6J mice using an adeno-associated virus vector under the control of a glial fibrillary acidic protein promoter. The expression of astroglial MHCI in the mPFC impaired sociability and recognition memory in mice. Regarding neuropathological changes, MHCI expression in astrocytes significantly activated microglial cells, decreased parvalbumin-positive cell numbers, and reduced dendritic spine density in the mPFC. A treatment with GW4869 that impairs exosome synthesis ameliorated these behavioral and neuropathological changes. These results suggest that the overexpression of MHCI in astrocytes affects microglial proliferation as well as neuronal numbers and spine densities, thereby leading to social and cognitive deficits in mice, possibly via exosomes created by astrocytes.
Collapse
Affiliation(s)
- Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Akira Nakajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Yuki Murakami
- Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Yasuko Yamamoto
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kuniaki Saito
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan.,Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| |
Collapse
|
19
|
Feng J, Li M, Wei Q, Li S, Song S, Hua Z. Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes. J Neuroinflammation 2018; 15:23. [PMID: 29357878 PMCID: PMC5776766 DOI: 10.1186/s12974-018-1064-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Bilirubin-induced neurological dysfunction (BIND), a severe complication of extreme neonatal hyperbilirubinemia, could develop into permanent neurodevelopmental impairments. Several studies have demonstrated that inflammation and nerve cell death play important roles in bilirubin-induced neurotoxicity; however, the underlying mechanism remains unidentified. Methods The present study was intended to investigate whether pyroptosis, a highly inflammatory form of programmed cell death, participated in the bilirubin-mediated toxicity on cultured rat cortical astrocytes. Further, VX-765, a potent and selective competitive drug, was used to inhibit the activation of caspase-1. The effects of VX-765 on astrocytes treated with bilirubin, including the cell viability, morphological changes of the cell membrane and nucleus, and the production of pro-inflammation cytokines, were observed. Results Stimulation of the astrocytes with unconjugated bilirubin (UCB) at the conditions mimicking those of jaundiced newborns significantly increased the activation of caspase-1. Further, caspase-1 activation was inhibited by treatment with VX-765. Compared with UCB-treated astrocytes, the relative cell viability of VX-765-pretreated astrocytes was improved; meanwhile, the formation of plasma membrane pores was prevented, as measured by lactate dehydrogenase release, trypan blue staining, and ethidium bromide (EtBr) uptake. Moreover, DNA fragmentation was partly attenuated and the release of IL-1β and IL-18 was apparently decreased. Conclusion Pyroptosis is involved in the process of UCB-induced rat cortical astrocytes’ injury in vitro and may be the missing link of cell death and inflammatory response exacerbating UCB-related neurotoxicity. More importantly, the depression of caspase-1 activation, the core link of pyroptosis, attenuated UCB-induced cellular dysfunction and cytokine release, which might shed light on a new therapeutic approach to BIND.
Collapse
Affiliation(s)
- Jie Feng
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| | - Mengwen Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| | - Qian Wei
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| | - Shengjun Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| | - Sijie Song
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China. .,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China.
| |
Collapse
|
20
|
Abstract
OBJECTIVE Our aim was to perform an updated systematic review and meta-analysis on the efficacy and safety of adjunctive minocycline as a treatment of schizophrenia. METHODS We conducted a PubMed/Scopus database search from inception to 3 February 2016 for randomized, placebo-controlled trials (RCTs), open non-randomized studies, and case reports/series evaluating minocycline in patients with schizophrenia. Random-effects meta-analysis of positive, negative, depressive, and cognitive symptom rating scales, discontinuation and adverse effects rates calculating standardized mean difference (SMD), and risk ratios±95% confidence intervals (CI 95%) were calculated. RESULTS Six RCTs were eligible (minocycline n=215, placebo n=198) that demonstrated minocycline's superiority versus placebo for reducing endpoint Positive and Negative Syndrome Scale (PANSS) total scores (SMD=-0.59; CI 95%=[1.15, -0.03]; p=0.04), negative (SMD=-0.76; CI 95%=[-1.21, -0.31]; p=0.001); general subscale scores (SMD=-0.44; CI 95%=[-0.88, -0.00]; p=0.05), Clinical Global Impressions scores (SMD=-0.50; CI 95%=[-0.78, -0.22]; p<0.001); and executive functioning (SMD=0.22; CI 95%=[0.01, 0.44]; p=0.04). Endpoint PANSS positive symptom scores (p=0.13), depression rating scale scores (p=0.43), attention (p=0.47), memory (p=0.52), and motor speed processing (p=0.50) did not significantly differ from placebo, before execution of a trim-and-fill procedure. Minocycline did not differ compared to placebo on all-cause discontinuation (p=0.56), discontinuation due to inefficacy (p=0.99), and intolerability (p=0.51), and due to death (p=0.32). Data from one open-label study (N=22) and three case series (N=6) were consistent with the metaanalytic results. CONCLUSIONS Minocycline appears to be an effective adjunctive treatment option in schizophrenia, improving multiple relevant disease dimensions. Moreover, minocycline has an acceptable safety and tolerability profile. However, more methodologically sound and larger RCTs remain necessary to confirm and extend these results.
Collapse
|
21
|
Mancuso C. Bilirubin and brain: A pharmacological approach. Neuropharmacology 2017; 118:113-123. [PMID: 28315352 DOI: 10.1016/j.neuropharm.2017.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/01/2023]
Abstract
For many decades, the world scientific literature has accounted for a number of works on the biological effects of bilirubin-IXalpha (BR). The first studies focused on the neurotoxic effects of the excessive production of BR, in particular regarding both physiological neonatal jaundice and the more severe ones, typically as consequences of severe hemolysis or other underlying diseases. Only since 1987, has significant evidence, however, underlined the neuroprotective role of BR linked to the scavenging effect of free radicals as reactive oxygen species and nitric oxide and its congeners. Despite the presence in the literature of many excellent papers dealing with the multiple roles played by BR in health and disease, there were very few and somewhat dated reviews that summarize the key findings related to the neuroprotective and neurotoxic effects of the bile pigment and underlying mechanisms. In light of the previous statements, the aim of this review is to provide a summary of the main discoveries in the last years on the effects of BR on the central nervous system. An analytical description about the synthesis of BR, its distribution in the systemic circulation, liver metabolism and elimination through feces and urine will be provided, together with the main mechanisms claimed to describe the neurotoxicity and neuroprotection by the bile pigment. Finally, the possible translational aspects of pharmacological modulation in the production of BR in order to prevent or counteract toxic effects or enhance the protective actions, will be discussed.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1-00168 Rome, Italy.
| |
Collapse
|
22
|
Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflammation 2016; 13:230. [PMID: 27590010 PMCID: PMC5009533 DOI: 10.1186/s12974-016-0688-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/18/2016] [Indexed: 11/23/2022] Open
Abstract
Background Although electroconvulsive therapy (ECT) is regarded as one of the efficient treatments for intractable psychiatric disorders, the mechanism of therapeutic action remains unclear. Recently, many studies indicate that ECT affects the immune-related cells, such as microglia, astrocytes, and lymphocytes. Moreover, microglial activation and astrocytic activation have been implicated in the postmortem brains of schizophrenia patients. We previously demonstrated that Gunn rats showed schizophrenia-like behavior and microglial activation in their brains. The present study examined the effects of electroconvulsive shock (ECS), an animal counterpart of ECT, on schizophrenia-like behavior, microgliosis, and astrogliosis in the brain of Gunn rats. Methods The rats were divided into four groups, i.e., Wistar sham, Wistar ECS, Gunn sham, and Gunn ECS. ECS groups received ECS once daily for six consecutive days. Subsequently, prepulse inhibition (PPI) test was performed, and immunohistochemistry analysis was carried out to determine the activation degree of microglia and astrocytes in the hippocampus by using anti-CD11b and anti-glial fibrillary acidic protein (GFAP) antibody, respectively. Results We found PPI deficit in Gunn rats compared to Wistar rats, and it was significantly improved by ECS. Immunohistochemistry analysis revealed that immunoreactivity of CD11b and GFAP was significantly increased in Gunn rats compared to Wistar rats. ECS significantly attenuated the immunoreactivity of both CD11b and GFAP in Gunn rats. Conclusions ECS ameliorated schizophrenia-like behavior of Gunn rats and attenuated microgliosis and astrogliosis in the hippocampus of Gunn rats. Accordingly, therapeutic effects of ECT may be exerted, at least in part, by inhibition of glial activation. These results may provide crucial information to elucidate the role of activated glia in the pathogenesis of schizophrenia and to determine whether future therapeutic interventions should attempt to up-regulate or down-regulate glial functions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0688-2) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Abstract
Bilirubin-induced neurotoxicity in preterm neonates remains a clinical concern. Multiple cellular and molecular cascades likely underlie bilirubin-induced neuronal injury, including plasma membrane perturbations, excitotoxicity, neuroinflammation, oxidative stress, and cell cycle arrest. Preterm newborns are particularly vulnerable secondary to central nervous system immaturity and concurrent adverse clinical conditions that may potentiate bilirubin toxicity. Acute bilirubin encephalopathy in preterm neonates may be subtle and manifest primarily as recurrent symptomatic apneic events. Low-bilirubin kernicterus continues to be reported in preterm neonates, and although multifactorial in nature, is often associated with marked hypoalbuminemia.
Collapse
Affiliation(s)
- Jon F Watchko
- Division of Newborn Medicine, Department of Pediatrics, Magee-Womens Hospital, Children's Hospital of Pittsburgh, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Sitagliptin attenuated brain damage and cognitive impairment in mice with chronic cerebral hypo-perfusion through suppressing oxidative stress and inflammatory reaction. J Hypertens 2016; 33:1001-13. [PMID: 25689400 DOI: 10.1097/hjh.0000000000000529] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sitagliptin, a new antidiabetic drug that inhibits dipeptidyl peptidase (DPP)-4 enzyme activity, has been reported to possess neuroprotective property. We tested the protective effects of sitagliptin against chronic cerebral hypoperfusion (CHP) in mice after bilateral carotid artery stenosis (BCAS). METHOD Thirty C57BL/6 mice were divided into three groups: sham control (n = 10), CHP (n = 10) and CHP-sitagliptin (orally 600 mg/kg/day) (n = 10). Working memory was assessed with novel-object recognition test. MRI was performed at day 0 and day 90 after BCAS procedure prior to sacrifice. RESULTS Immunohistochemical (IHC) staining showed significantly enhanced white matter lesions, microglia activation and astrocytosis of white matter in CHP group than in sham control, but the changes were significantly suppressed after sitagliptin treatment (all P < 0.01). The mRNA expressions of inflammatory [tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein (MCP-1) and matrix metalloproteinase (MMP)-2] and apoptotic (Bax) biomarkers showed an identical pattern, whereas the anti-inflammatory (interleukin, IL-10) and antiapoptotic (Bcl-2) biomarkers showed an opposite pattern compared with that of IHC among all groups (all P < 0.01). The protein expressions of oxidative stress (NOX-I, NOX-II, nitrotyrosin, oxidized protein), inflammatory [nuclear factor-kappa B (NF-κB), TNF-α and MMP-2], apoptotic [mitochondrial Bax, cleaved poly(ADP-ribose) polymerase (PARP)] and DNA-damage (γ-H2AX) markers showed an identical pattern, while expression pattern of antiapoptotic marker (Bcl-2) was opposite to that of IHC (all P < 0.01). Glycogen-like peptide-1 receptor protein expression progressively increased from sham control to CHP-sitagliptin (P < 0.01). The short-term working-memory loss and MRI/diffusion tensor imaging (DTI) showed a pattern identical to that of IHC in all groups (all P < 0.01). CONCLUSION Sitagliptin protected against cognitive impairment and brain damage in a murine CHP model.
Collapse
|
25
|
Hou Y, Xie G, Liu X, Li G, Jia C, Xu J, Wang B. Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice. Psychopharmacology (Berl) 2016; 233:905-16. [PMID: 26645224 DOI: 10.1007/s00213-015-4169-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. OBJECTIVES This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. METHODS Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. RESULTS Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. CONCLUSIONS Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.
Collapse
Affiliation(s)
- Yue Hou
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China
| | - Guanbo Xie
- The 307th Hospital of Chinese People's Liberation Army, 100071, Beijing, China.,Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xia Liu
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China.,Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Guoxun Li
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China
| | - Congcong Jia
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China
| | - Jinghua Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China.
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, 110004, Shenyang, China.
| |
Collapse
|
26
|
Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 2016; 173:666-80. [PMID: 26455353 PMCID: PMC4742288 DOI: 10.1111/bph.13364] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia.
Collapse
Affiliation(s)
- L E Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - I Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - G Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - A Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - E Skafidas
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - V L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
27
|
Abstract
OBJECTIVE Clozapine is the most effective antipsychotic for treatment refractory people with schizophrenia, yet many patients only partially respond. Accumulating preclinical and clinical data suggest benefits with minocycline. We tested adjunct minocycline to clozapine in a 10-week, double-blind, placebo-controlled trial. Primary outcomes tested were positive, and cognitive symptoms, while avolition, anxiety/depression, and negative symptoms were secondary outcomes. METHODS Schizophrenia and schizoaffective participants (n = 52) with persistent positive symptoms were randomized to receive adjunct minocycline (100 mg oral capsule twice daily; n = 29) or placebo (n = 23). RESULTS Brief Psychiatric Rating Scale (BPRS) psychosis factor (P = 0.098; effect size [ES], 0.39) and BPRS total score (P = 0.075; ES, 0.55) were not significant. A change in total BPRS symptoms of more than or equal to 30% was observed in 7 (25%) of 28 among minocycline and 1 (4%) of 23 among placebo participants, respectively (P = 0.044). Global cognitive function (MATRICS Consensus Cognitive Battery) did not differ, although there was a significant variation in size of treatment effects among cognitive domains (P = 0.03), with significant improvement in working memory favoring minocycline (P = 0.023; ES, 0.41). The Scale for the Assessment of Negative Symptoms total score did not differ, but significant improvement in avolition with minocycline was noted (P = 0.012; ES, 0.34). Significant improvement in the BPRS anxiety/depression factor was observed with minocycline (P = 0.028; ES, 0.49). Minocycline was well tolerated with significantly fewer headaches and constipation compared with placebo. CONCLUSIONS Minocycline's effect on the MATRICS Consensus Cognitive Battery composite score and positive symptoms were not statistically significant. Significant improvements with minocycline were seen in working memory, avolition, and anxiety/depressive symptoms in a chronic population with persistent symptoms. Larger studies are needed to validate these findings.
Collapse
|
28
|
Watchko JF, Painter MJ, Panigrahy A. Are the neuromotor disabilities of bilirubin-induced neurologic dysfunction disorders related to the cerebellum and its connections? Semin Fetal Neonatal Med 2015; 20:47-51. [PMID: 25547431 DOI: 10.1016/j.siny.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Investigators have hypothesized a range of subcortical neuropathology in the genesis of bilirubin-induced neurologic dysfunction (BIND). The current review builds on this speculation with a specific focus on the cerebellum and its connections in the development of the subtle neuromotor disabilities of BIND. The focus on the cerebellum derives from the following observations: (i) the cerebellum is vulnerable to bilirubin-induced injury; perhaps the most vulnerable region within the central nervous system; (ii) infants with cerebellar injury exhibit a neuromotor phenotype similar to BIND; and (iii) the cerebellum has extensive bidirectional circuitry projections to motor and non-motor regions of the brainstem and cerebral cortex that impact a variety of neurobehaviors. Future study using advanced magnetic resonance neuroimaging techniques have the potential to shed new insights into bilirubin's effect on neural network topology via both structural and functional brain connectivity measurements.
Collapse
Affiliation(s)
- Jon F Watchko
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Michael J Painter
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Zhu F, Zheng Y, Liu Y, Zhang X, Zhao J. Minocycline alleviates behavioral deficits and inhibits microglial activation in the offspring of pregnant mice after administration of polyriboinosinic-polyribocytidilic acid. Psychiatry Res 2014; 219:680-6. [PMID: 25042426 DOI: 10.1016/j.psychres.2014.06.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/20/2014] [Accepted: 06/23/2014] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have indicated that maternal infection during pregnancy may lead to a higher incidence of schizophrenia in the offspring. Activation of microglia is a key event in the reaction of the cerebral immune system to pathological changes. It can be hypothesized that microglia contribute to the neuropathology of schizophrenia. In this study, at embryonic day (ED) 9 pregnant mice were treated with intraperitoneal injection of polyriboinosinic-polyribocytidilic acid (Poly I:C) at a single dose of 20 mg/kg. At postnatal day 42, descendants were treated with minocycline (40 mg/kg) or saline for consecutive 14 days. Behavioral changes (locomotor activity, social interaction, and prepulse inhibition) were examined and the number of microglia was assessed after the treatment. The adult offspring exposed to Poly I:C at ED 9 showed behavioral changes (hyperlocomotion, deficits in social interaction and prepulse inhibition) and significant microglial activation in these brain areas (hippocampus, thalamus, and cerebral cortex) compared to those in saline-injected group. Moreover, minocycline attenuated the behavioral deficits and inhibited the activated microglia. These findings suggest that maternal infection may contribute to microglial activation in the offspring. In addition, the effect of minocycline in this immune model may be related to the inhibition of microglial activation.
Collapse
Affiliation(s)
- Furong Zhu
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China
| | - Yingjun Zheng
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China; Department of General Psychiatry, Brain Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical College, Guangdong, Guangzhou 510370, China
| | - Yong Liu
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China
| | - Xianghui Zhang
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China
| | - Jingping Zhao
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China.
| |
Collapse
|
30
|
Watchko JF, Maisels MJ. The enigma of low bilirubin kernicterus in premature infants: why does it still occur, and is it preventable? Semin Perinatol 2014; 38:397-406. [PMID: 25267279 DOI: 10.1053/j.semperi.2014.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low bilirubin kernicterus in preterm neonates, though rare, remains an unpredictable and refractory form of brain injury. Hypoalbuminemia, co-morbid CNS insult(s), infection, and inflammation are contributing causes that, in many cases, appear to interact in potentiating bilirubin neurotoxicity. Despite compulsive attention to serum bilirubin levels, and clinical and laboratory indices of neurotoxicity risk, low bilirubin kernicterus continues to be seen in contemporary NICUs. While efforts to refine and improve current treatment guidelines are certainly needed, such revision(s) will also have to take into account the risks and benefits of any intervention, including phototherapy.
Collapse
Affiliation(s)
- Jon F Watchko
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - M Jeffrey Maisels
- Division of Newborn Medicine, Department of Pediatrics, Oakland University William Beaumont School of Medicine, Beaumont Children's Hospital, Royal Oak, MI
| |
Collapse
|
31
|
Popiolek-Barczyk K, Rojewska E, Jurga AM, Makuch W, Zador F, Borsodi A, Piotrowska A, Przewlocka B, Mika J. Minocycline enhances the effectiveness of nociceptin/orphanin FQ during neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762930. [PMID: 25276817 PMCID: PMC4168034 DOI: 10.1155/2014/762930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/01/2014] [Indexed: 12/27/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5-5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [(35)S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain.
Collapse
Affiliation(s)
- Katarzyna Popiolek-Barczyk
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Ferenz Zador
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62 Street, Szeged 6726, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62 Street, Szeged 6726, Hungary
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| |
Collapse
|