1
|
da Silva MES, Christianetti B, Amazonas E, Pereira ML. Case report: Cannabinoid therapy for discoid lupus erythematosus in a dog. Front Vet Sci 2024; 11:1309167. [PMID: 38406630 PMCID: PMC10884172 DOI: 10.3389/fvets.2024.1309167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Discoid lupus erythematosus (DLE) is a common autoimmune skin disease in dogs. Conventional treatments, such as corticosteroids, can be effective but often have side effects. This case report presents a successful use of cannabinoid therapy (CT) in a dog with DLE resistant to conventional treatment. A 2-year-old mixed-breed dog with a history of DLE presented with worsening lesions despite treatment with corticosteroids and other medications. Liver enzymes levels were elevated, indicating corticosteroid-induced side effects. CT with a CBD-rich full spectrum Cannabis oil was initiated. The dosage was gradually adjusted until the minimum effective dose was found. Within a few weeks of starting CT, the dog showed significant improvement in skin lesions and in liver enzymes levels. After 1 year, the dog remains clinically stable on a low dose of full-spectrum CBD-rich oil. No evidence of DLE recurrence was observed. This case suggests that CT may be a viable alternative or complementary therapy for DLE in dogs, particularly for those experiencing adverse effects from conventional treatments. Further research is warranted to confirm the efficacy and safety of CT for DLE management in dogs.
Collapse
Affiliation(s)
| | - Bruna Christianetti
- Veterinary Medicine Student, Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
| | - Erik Amazonas
- Department of Biosciences and One Health, Center for Rural Sciences, Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
- Cannabis Development and Innovation Center (PODICAN/UFSC), Curitibanos, Brazil
| | - Marcy Lancia Pereira
- Department of Biosciences and One Health, Center for Rural Sciences, Federal University of Santa Catarina (UFSC), Curitibanos, Brazil
| |
Collapse
|
2
|
Sinclair J, Abbott J, Proudfoot A, Armour M. The Place of Cannabinoids in the Treatment of Gynecological Pain. Drugs 2023; 83:1571-1579. [PMID: 37831340 PMCID: PMC10693518 DOI: 10.1007/s40265-023-01951-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Cannabis sativa (L), a plant with an extensive history of medicinal usage across numerous cultures, has received increased attention over recent years for its therapeutic potential for gynecological disorders such as endometriosis, chronic pelvic pain, and primary dysmenorrhea, due at least in part to shortcomings with current management options. Despite this growing interest, cannabis inhabits an unusual position in the modern medical pharmacopoeia, being a legal medicine, legal recreational drug, and an illicit drug, depending on jurisdiction. To date, the majority of studies investigating cannabis use have found that most people are using illicit cannabis, with numerous obstacles to medical cannabis adoption having been identified, including outdated drug-driving laws, workplace drug testing policies, the cost of quality-assured medical cannabis products, a lack of cannabis education for healthcare professionals, and significant and persistent stigma. Although currently lacking robust clinical trial data, a growing evidence base of retrospective data, cohort studies, and surveys does support potential use in gynecological pain conditions, with most evidence focusing on endometriosis. Cannabis consumers report substantial reductions in pelvic pain, as well as common comorbid symptoms such as gastrointestinal disturbances, mood disorders such as anxiety and depression, and poor sleep. Substitution effects were reported, with >50% reduction or cessation in opioid and/or non-opioid analgesics being the most common. However, a substantial minority report not disclosing cannabis consumption to their health professional. Therefore, while such deprescribing trends are potentially beneficial, the importance of medical supervision during this process is paramount given the possibility for withdrawal symptoms.
Collapse
Affiliation(s)
- Justin Sinclair
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia.
| | - Jason Abbott
- Division of Obstetrics and Gynaecology, School of Clinical Medicine, Medicine and Health, UNSW, Sydney, NSW, Australia
- Gynaecological Research and Clinical Research (GRACE) Unit, Royal Hospital for Women, UNSW, Sydney, NSW, Australia
| | - Andrew Proudfoot
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| | - Mike Armour
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia.
- Translational Health Research Institute, Western Sydney University, Sydney, NSW, Australia.
- Medical Research Institute of New Zealand (MRINZ), Wellington, New Zealand.
| |
Collapse
|
3
|
Alhaddad A, Radwan A, Mohamed NA, Mehanna ET, Mostafa YM, El-Sayed NM, Fattah SA. Rosiglitazone Mitigates Dexamethasone-Induced Depression in Mice via Modulating Brain Glucose Metabolism and AMPK/mTOR Signaling Pathway. Biomedicines 2023; 11:biomedicines11030860. [PMID: 36979839 PMCID: PMC10046017 DOI: 10.3390/biomedicines11030860] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Major depressive disorder (MDD) is a common, complex disease with poorly understood pathogenesis. Disruption of glucose metabolism is implicated in the pathogenesis of depression. AMP-activated protein kinase (AMPK) has been shown to regulate the activity of several kinases, including pAKT, p38MAPK, and mTOR, which are important signaling pathways in the treatment of depression. This study tested the hypothesis that rosiglitazone (RGZ) has an antidepressant impact on dexamethasone (DEXA)-induced depression by analyzing the function of the pAKT/p38MAPK/mTOR pathway and NGF through regulation of AMPK. MDD-like pathology was induced by subcutaneous administration of DEXA (20 mg/kg) for 21 days in all groups except in the normal control group, which received saline. To investigate the possible mechanism of RGZ, the protein expression of pAMPK, pAKT, p38MAPK, and 4EBP1 as well as the levels of hexokinase, pyruvate kinase, and NGF were assessed in prefrontal cortex and hippocampal samples. The activities of pAMPK and NGF increased after treatment with RGZ. The administration of RGZ also decreased the activity of mTOR as well as downregulating the downstream signaling pathways pAKT, p38MAPK, and 4EBP1. Here, we show that RGZ exerts a potent inhibitory effect on the pAKT/p38MAPK/mTOR/4EBP1 pathway and causes activation of NGF in brain cells. This study has provided sufficient evidence of the potential for RGZ to ameliorate DEXA-induced depression. A new insight has been introduced into the critical role of NGF activation in brain cells in depression. These results suggest that RGZ is a promising antidepressant for the treatment of MDD.
Collapse
Affiliation(s)
- Aisha Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Asmaa Radwan
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noha A. Mohamed
- Department of Forgery & Counterfeiting, Forensic Medicine, Ministry of Justice, Ismailia 41522, Egypt
| | - Eman T. Mehanna
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| | - Yasser M. Mostafa
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr 11829, Egypt
| | - Norhan M. El-Sayed
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| | - Shaimaa A. Fattah
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Flannery LE, Kerr DM, Hughes EM, Kelly C, Costello J, Thornton AM, Humphrey RM, Finn DP, Roche M. N-acylethanolamine regulation of TLR3-induced hyperthermia and neuroinflammatory gene expression: A role for PPARα. J Neuroimmunol 2021; 358:577654. [PMID: 34265624 PMCID: PMC8243641 DOI: 10.1016/j.jneuroim.2021.577654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1β, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Edel M Hughes
- Physiology, National University of Ireland, Galway, Ireland
| | - Colm Kelly
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - Rachel M Humphrey
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
5
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Exacerbated LPS/GalN-Induced Liver Injury in the Stress-Sensitive Wistar Kyoto Rat Is Associated with Changes in the Endocannabinoid System. Molecules 2020; 25:molecules25173834. [PMID: 32842550 PMCID: PMC7504576 DOI: 10.3390/molecules25173834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acute liver injury (ALI) is a highly destructive and potentially life-threatening condition, exacerbated by physical and psychological stress. The endocannabinoid system plays a key role in modulating stress and hepatic function. The aim of this study was to examine the development of acute liver injury in the genetically susceptible stress-sensitive Wistar-Kyoto (WKY) rat compared with normo-stress-sensitive Sprague Dawley (SD) rats, and associated changes in the endocannabinoid system. Administration of the hepatotoxin lipopolysaccharide/D-Galactosamine (LPS/GalN) resulted in marked liver injury in WKY, but not SD rats, with increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) plasma levels, significant histopathological changes, increased hepatic pro-inflammatory cytokine expression and caspase-3 activity and expression and reduced Glutathione (GSH) activity. Furthermore, compared to SD controls, WKY rats display increased anandamide and 2-Arachidonoylglycerol levels concurrent with decreased expression of their metabolic enzymes and a decrease in cannabinoid (CB)1 receptor expression following LPS/GalN. CB1 antagonism with AM6545 or CB2 agonism with JWH133 did not alter LPS/GalN-induced liver injury in SD or WKY rats. These findings demonstrate exacerbation of acute liver injury induced by LPS/GalN in a stress-sensitive rat strain, with effects associated with alterations in the hepatic endocannabinoid system. Further studies are required to determine if the endocannabinoid system mediates or modulates the exacerbation of liver injury in this stress-sensitive rat strain.
Collapse
|
7
|
Ferizovic H, Spasojevic N, Stefanovic B, Jankovic M, Dronjak S. The fatty acid amide hydrolase inhibitor URB597 modulates splenic catecholamines in chronically stressed female and male rats. Int Immunopharmacol 2020; 85:106615. [PMID: 32447219 DOI: 10.1016/j.intimp.2020.106615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
The changes in sympathetic innervations in lymphoid organs could be a key factor in immune dysregulation. The endocannabinoid system has been shown to exhibit potent immunomodulatory effects that may differ between males and females, representing a potential therapeutic target for peripheral and central inflammatory disorders. Thus, in the present study, an examination was made of the effect of fatty acid amide hydrolase inhibitor URB597 treatment on splenic catecholamine content, synthesis, uptake and degradation in chronically unpredictably stressed (CUS) female and male rats. The results show that CUS increases anxiety-like behaviors and that URB597 had an anxiolytic effect on chronically stressed animals of both sexes. CUS induced the expression of plasma interleukin - 6 (IL-6), interleukin - 10 (IL-10) and IL-6 in the spleen, whereas the expression of IL-10 was reduced in the spleen of both sexes. URB597 treatment did not cause changes in IL-6 in plasma or the spleen, whereas it increased IL-10 in the spleen in CUS animals of both sexes. CUS caused a significant depletion of noradrenaline content in the spleen of female rats and a reduction in noradrenaline uptake in the spleen of female rats, while stressed males had a small but insignificant decrease of splenic noradrenaline levels and an enhanced uptake. The FAAH inhibitor URB597 enhances reduced noradrenaline content, affecting its uptake directly at the level of the spleen. It gives rise to the possibility that endocannabinoids exert a neurorestorative effect on the sympathetic nerve system and cell-mediated immune responses in the spleen of chronically stressed rats.
Collapse
Affiliation(s)
- Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Milica Jankovic
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
8
|
Fitzgibbon M, Kerr DM, Henry RJ, Finn DP, Roche M. Endocannabinoid modulation of inflammatory hyperalgesia in the IFN-α mouse model of depression. Brain Behav Immun 2019; 82:372-381. [PMID: 31505257 DOI: 10.1016/j.bbi.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Depression is a well-recognised effect of long-term treatment with interferon-alpha (IFN-α), a widely used treatment for chronic viral hepatitis and malignancy. In addition to the emotional disturbances, high incidences of painful symptoms such as headache and joint pain have also been reported following IFN-α treatment. The endocannabinoid system plays an important role in emotional and nociceptive processing, however it is unknown whether repeated IFN-α administration induces alterations in this system. The present study investigated nociceptive responding in the IFN-α-induced mouse model of depression and associated changes in the endocannabinoid system. Furthermore, the effects of modulating peripheral endocannabinoid tone on inflammatory pain-related behaviour in the IFN-α model was examined. Repeated IFN-α administration (8000 IU/g/day) to male C57/Bl6 mice increased immobility in the forced swim test and reduced sucrose preference, without altering body weight gain or locomotor activity, confirming development of the depressive-like phenotype. There was no effect of repeated IFN-α administration on latency to respond in the hot plate test on day 4 or 7 of treatment, however, formalin-evoked nociceptive behaviour was significantly increased in IFN-α treated mice following 8 days of IFN-α administration. 2-Arachidonoyl glycerol (2-AG) levels in the periaqueductal grey (PAG) and rostroventromedial medulla (RVM), and anandamide (AEA) levels in the RVM, were significantly increased in IFN-α-, but not saline-, treated mice following formalin administration. There was no change in endocannabinoid levels in the prefrontal cortex, spinal cord or paw tissue between saline- or IFNα-treated mice in the presence or absence of formalin. Furthermore, repeated IFN-α and/or formalin administration did not alter mRNA expression of genes encoding the endocannabinoid catabolic enzymes (fatty acid amide hydrolase or monoacylglycerol lipase) or endocannabinoid receptor targets (CB1, CB2 or PPARs) in the brain, spinal cord or paw tissue. Intra plantar administration of PF3845 (1 μg/10 μl) or MJN110 (1 μg/10 μl), inhibitors of AEA and 2-AG catabolism respectively, attenuated formalin-evoked hyperalgesia in IFN-α, but not saline-, treated mice. In summary, increasing peripheral endocannabinoid tone attenuates inflammatory hyperalgesia induced following repeated IFN-α administration. These data provide support for the endocannabinoid system in mediating and modulating heightened pain responding associated with IFNα-induced depression.
Collapse
Affiliation(s)
- Marie Fitzgibbon
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
9
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
10
|
Flannery LE, Kerr DM, Finn DP, Roche M. FAAH inhibition attenuates TLR3-mediated hyperthermia, nociceptive- and anxiety-like behaviour in female rats. Behav Brain Res 2018; 353:11-20. [PMID: 29953903 DOI: 10.1016/j.bbr.2018.06.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023]
Abstract
Aberrant activation of toll-like receptor (TLR)s results in persistent and prolonged neuroinflammation and has been implicated in the pathogenesis and exacerbation of psychiatric and neurodegenerative disorders. TLR3 coordinates the innate immune response to viral infection and recent data have demonstrated that inhibiting fatty acid amide hydrolase (FAAH), the enzyme that primarily metabolizes anandamide, modulates TLR3-mediated neuroinflammation. However, the physiological and behavioural consequences of such modulation are unknown. The present study examined the effect of URB597, a selective FAAH inhibitor, on neuroinflammation, physiological and behavioural alterations following administration of the TLR3 agonist and viral mimetic poly I:C to female rats. URB597 attenuated TLR3-mediated fever, mechanical and cold allodynia, and anxiety-like behaviour in the elevated plus maze and open field arena. There was no effect of URB597 on TLR3-mediated decreases in body weight and no effect in the sucrose preference or forced swim tests. URB597 attenuated the TLR3-mediated increase in the expression of CD11b and CD68, markers of microglia/macrophage activation. In summary, these data demonstrate that enhancing FAAH substrate levels suppresses TLR3-mediated microglia/macrophage activation and associated changes in fever, nociceptive responding and anxiety-related behaviour. These data provide further support for FAAH as a novel therapeutic target for neuroinflammatory disorders.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland.
| |
Collapse
|
11
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Zhao Z, Zhang L, Guo XD, Cao LL, Xue TF, Zhao XJ, Yang DD, Yang J, Ji J, Huang JY, Sun XL. Rosiglitazone Exerts an Anti-depressive Effect in Unpredictable Chronic Mild-Stress-Induced Depressive Mice by Maintaining Essential Neuron Autophagy and Inhibiting Excessive Astrocytic Apoptosis. Front Mol Neurosci 2017; 10:293. [PMID: 28959186 PMCID: PMC5603714 DOI: 10.3389/fnmol.2017.00293] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
There is increasing interest in the association between depression and the development of metabolic diseases. Rosiglitazone, a therapeutic drug used to treat type 2 diabetes mellitus, has shown neuroprotective effects in patients with stroke and Alzheimer's disease. The present study was performed to evaluate the possible roles of rosiglitazone in in vivo (unpredictable chronic mild stress-induced depressive mouse model) and in vitro (corticosterone-induced cellular model) depressive models. The results showed that rosiglitazone reversed depressive behaviors in mice, as indicated by the forced swimming test and open field test. Rosiglitazone was also found to inhibit the inflammatory response, decrease corticosterone levels, and promote astrocyte proliferation and neuronal axon plasticity in the prefrontal cortex of mice. This series of in vivo and in vitro experiments showed that autophagy among neurons was inhibited in depressive models and that rosiglitazone promoted autophagy by upregulating LKB1, which exerted neuroprotective effects. Rosiglitazone was also found to activate the Akt/CREB pathway by increasing IGF-1R expression and IGF-1 protein levels, thereby playing an anti-apoptotic role in astrocytes. Rosiglitazone's autophagy promotion and neuroprotective effects were found to be reversed by the PPARγ antagonist T0070907 in primary neurons and by PPARγ knockdown in an N2a cell line. In conclusion, we found that rosiglitazone protects both neurons and astrocytes in in vivo and in vitro depressive models, thereby playing an anti-depressive role. These findings suggest that PPARγ could be a new target in the development of anti-depressive drugs.
Collapse
Affiliation(s)
- Zhan Zhao
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Ling Zhang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xu-Dong Guo
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Lu-Lu Cao
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Teng-Fei Xue
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xiao-Jie Zhao
- Neuroprotective Drug Discovery Key Laboratory, Department of Forensic Medicine, Nanjing Medical UniversityNanjing, China
| | - Dan-Dan Yang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Ji-Ye Huang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
13
|
Flannery LE, Henry RJ, Kerr DM, Finn DP, Roche M. FAAH, but not MAGL, inhibition modulates acute TLR3-induced neuroimmune signaling in the rat, independent of sex. J Neurosci Res 2017; 96:989-1001. [PMID: 28726298 DOI: 10.1002/jnr.24120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR)3 is a key component of the innate immune response to viral infection. The present study firstly examined whether sex differences exist in TLR3-induced inflammatory, endocrine, and sickness responses. The data revealed that TLR3-induced expression of interferon- or NFkB-inducible genes (IFN-α/β, IP-10, or TNF-α), either peripherally (spleen) or centrally (hypothalamus), did not differ between male and female rats, with the exception of TLR3-induced IFN-α expression in the spleen of female, but not male, rats 8 hr post TLR3 activation. Furthermore, TLR3 activation increased plasma corticosterone levels, induced fever, and reduced locomotor activity and body weight - effects independent of sex. Thus, the acute-phase inflammatory, endocrine, and sickness responses to TLR3 activation exhibit minimal sex-related differences. A further aim of this study was to examine whether enhancing endocannabinoid tone - namely, 2-arachidonylglycerol (2-AG) or N-arachidonoylethanolamine (AEA), exhibited similar effects on TLR3-induced inflammatory responses in male versus female rats. Systemic administration of the monoacylglycerol lipase (MAGL) inhibitor MJN110 and subsequent increases in 2-AG levels did not alter the TLR3-induced increase in IP-10, IRF7, or TNF-α expression in the spleen or the hypothalamus of male or female rats. In contrast, the fatty acid amide hydrolase (FAAH) inhibitor URB597 increased levels of AEA and related N-acylethanolamines, an effect associated with the attenuation of TLR3-induced inflammatory responses in the hypothalamus, but not the spleen, of male and female rats. These data support a role for FAAH, but not MAGL, substrates in the modulation of TLR3-induced neuroinflammatory responses, effects independent of sex.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - David P Finn
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
14
|
Pharmacological inhibition of FAAH modulates TLR-induced neuroinflammation, but not sickness behaviour: An effect partially mediated by central TRPV1. Brain Behav Immun 2017; 62:318-331. [PMID: 28237711 DOI: 10.1016/j.bbi.2017.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of toll-like receptors (TLRs), key components of the innate immune system, has been proposed to underlie and exacerbate a range of central nervous system disorders. Increasing evidence supports a role for the endocannabinoid system in modulating inflammatory responses including those mediated by TLRs, and thus this system may provide an important treatment target for neuroinflammatory disorders. However, the effect of modulating endocannabinoid tone on TLR-induced neuroinflammation in vivo and associated behavioural changes is largely unknown. The present study examined the effect of inhibiting fatty acid amide hydrolyase (FAAH), the primary enzyme responsible for the metabolism of anandamide (AEA), in vivo on TLR4-induced neuroimmune and behavioural responses, and evaluated sites and mechanisms of action. Systemic administration of the FAAH inhibitor PF3845 increased levels of AEA, and related FAAH substrates N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA), in the frontal cortex and hippocampus of rats, an effect associated with an attenuation in the expression of pro- and anti-inflammatory cytokines and mediators measured 2hrs following systemic administration of the TLR4 agonist, lipopolysaccharide (LPS). These effects were mimicked by central i.c.v. administration of PF3845, but not systemic administration of the peripherally-restricted FAAH inhibitor URB937. Central antagonism of TRPV1 significantly attenuated the PF3845-induced decrease in IL-6 expression, effects not observed following antagonism of CB1, CB2, PPARα, PPARγ or GPR55. LPS-induced a robust sickness-like behavioural response and increased the expression of markers of glial activity and pro-inflammatory cytokines over 24hrs. Systemic administration of PF3845 modulated the TLR4-induced expression of neuroimmune mediators and anhedonia without altering acute sickness behaviour. Overall, these findings support an important role for FAAH substrates directly within the brain in the regulation of TLR4-associated neuroinflammation and highlight a role for TRPV1 in partially mediating these effects.
Collapse
|
15
|
Chen RA, Huang TL, Huang KW, Hung YY. TNFAIP3 mRNA Level Is Associated with Psychological Anxiety in Major Depressive Disorder. Neuroimmunomodulation 2017; 24:271-275. [PMID: 29486471 DOI: 10.1159/000486860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Major depressive disorder has been shown to be associated with inflammation and the dysregulation of innate immune responses. Previously, we showed an inverse correlation between the severity of depression and level of TNFAIP3 mRNA expression. The present study further evaluated the association between TNFAIP3 mRNA expression level and symptoms of major depressive disorder (MDD) in 91 patients (20 men and 71 women). METHODS The relationships between subscores on the 17-item Hamilton Depression Rating Scale (HAMD-17) and TNFAIP3 mRNA levels were assessed by multiple linear regression. RESULTS Only psychological anxiety on the HAMD-17 correlated significantly with TNFAIP3 mRNA expression. Other symptoms, such as depressed mood, insomnia, work and activities, and suicide, were not associated with TNFAIP3 mRNA expression. CONCLUSION These findings suggest a significant association between anxiety and TNFAIP3 mRNA levels in patients with MDD.
Collapse
Affiliation(s)
- Ruei-An Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Wei Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Nursing, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Yung Hung
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Aizpurua-Olaizola O, Elezgarai I, Rico-Barrio I, Zarandona I, Etxebarria N, Usobiaga A. Targeting the endocannabinoid system: future therapeutic strategies. Drug Discov Today 2017; 22:105-110. [DOI: 10.1016/j.drudis.2016.08.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 08/11/2016] [Indexed: 02/03/2023]
|
17
|
|
18
|
TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder. Brain Behav Immun 2017; 59:265-272. [PMID: 27640899 DOI: 10.1016/j.bbi.2016.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/21/2016] [Accepted: 09/14/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and abnormalities in Toll-like receptor (TLR) expression and activation have been linked to major depressive disorder (MDD). However, negative regulators of TLR pathways have not been previously investigated in this context. Here, we sought to investigate the association of depression severity, measured by the 17-item Hamilton Depression Rating Scale (HAMD-17), with mRNA expression levels of negative regulators of the TLR pathway, including SOCS1, TOLLIP, SIGIRR, MyD88s, NOD2 and TNFAIP3, in peripheral blood mononuclear cells (PBMCs) from 100 patients with MDD and 53 healthy controls, before and after treatment with antidepressants. Positive regulators of the TLR4 pathway, including Pellino 1, TRAF6 and IRAK1, were also investigated. Among all patients, MyD88s, and TNFAIP3 mRNAs were expressed at lower levels in PBMCs from patients with MDD. Multiple linear regression analyses revealed that TNFAIP3 mRNA expression before treatment was inversely correlated with severity of depression and effectively predicted improvement in HAMD-17 scores. Among 79 treatment-completers, only TNFAIP3 mRNA was significantly increased by treatment with antidepressants for 4 weeks. Treatment of human monocytes (THP-1) and mouse microglia (SIM-A9) cell lines with fluoxetine significantly increased TNFAIP3 mRNA expression and suppressed IL-6 levels. The suppressive effect of fluoxetine on IL-6 was attenuated by knockdown of TNFAIP3 expression. These findings suggest that both dysfunction of the negative regulatory system in patients with MDD and antidepressant treatment exert anti-inflammatory effects, at least in part through increased expression of the TNFAIP3 gene. They also indicate that modulating expression of the TNFAIP3 gene to rebalance TLR-mediated inflammatory signaling may be potential therapeutic strategy for treating MDD.
Collapse
|
19
|
Fitzpatrick JMK, Downer EJ. Toll-like receptor signalling as a cannabinoid target in Multiple Sclerosis. Neuropharmacology 2016; 113:618-626. [PMID: 27079840 DOI: 10.1016/j.neuropharm.2016.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/20/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are the sensors of pathogen-associated molecules that trigger tailored innate immune intracellular signalling responses to initiate innate immune reactions. Data from the experimental autoimmune encephalomyelitis (EAE) model indicates that TLR signalling machinery is a pivotal player in the development of murine EAE. To compound this, data from human studies indicate that complex interplay exists between TLR signalling and Multiple Sclerosis (MS) pathogenesis. Cannabis-based therapies are in clinical development for the management of a variety of medical conditions, including MS. In particular Sativex®, a combination of plant-derived cannabinoids, is an oromucosal spray with efficacy in MS patients, particularly those with neuropathic pain and spasticity. Despite this, the precise cellular and molecular mechanisms of action of Sativex® in MS patients remains unclear. This review will highlight evidence that novel interplay exists between the TLR and cannabinoid systems, both centrally and peripherally, with relevance to the pathogenesis of MS. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- John-Mark K Fitzpatrick
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
20
|
Lisboa SF, Gomes FV, Guimaraes FS, Campos AC. Microglial Cells as a Link between Cannabinoids and the Immune Hypothesis of Psychiatric Disorders. Front Neurol 2016; 7:5. [PMID: 26858686 PMCID: PMC4729885 DOI: 10.3389/fneur.2016.00005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide. Although several therapeutic options are available, the exact mechanisms responsible for the genesis of these disorders remain to be fully elucidated. In the last decade, a body of evidence has supported the involvement of the immune system in the pathophysiology of these conditions. Microglial cells play a significant role in maintaining brain homeostasis and surveillance. Dysregulation of microglial functions has been associated with several psychiatric conditions. Cannabinoids regulate the brain–immune axis and inhibit microglial cell activation. Here, we summarized evidence supporting the hypothesis that microglial cells could be a target for cannabinoid influence on psychiatric disorders, such as anxiety, depression, schizophrenia, and stress-related disorders.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Neuroscience, University of Pittsburgh , Pittsburgh, PA , USA
| | - Francisco S Guimaraes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Yui K. Editorial. New Targets of Medical Treatment in Psychiatric Disorders. Curr Neuropharmacol 2015; 13:736-8. [PMID: 26630953 PMCID: PMC4759312 DOI: 10.2174/1570159x1306151126144423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kunio Yui
- Research Institute of Pervasive Developmental Disorders Ashiya University Rokurokusocho 13-22, 659-8511 Ashiya Japan
| |
Collapse
|
22
|
Fitzgibbon M, Finn DP, Roche M. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity. Int J Neuropsychopharmacol 2015; 19:pyv095. [PMID: 26342110 PMCID: PMC4815466 DOI: 10.1093/ijnp/pyv095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.
Collapse
Affiliation(s)
| | | | - Michelle Roche
- Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.
| |
Collapse
|
23
|
Corcoran L, Roche M, Finn DP. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:203-55. [DOI: 10.1016/bs.irn.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|