1
|
Hirjak D, Rogers JP, Wolf RC, Kubera KM, Fritze S, Wilson JE, Sambataro F, Fricchione G, Meyer-Lindenberg A, Ungvari GS, Northoff G. Catatonia. Nat Rev Dis Primers 2024; 10:49. [PMID: 39025858 DOI: 10.1038/s41572-024-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Catatonia is a neuropsychiatric disorder characterized by motor, affective and cognitive-behavioural signs, which lasts from hours to days. Intensive research over the past two decades has led to catatonia being recognized as an independent diagnosis in the International Classification of Diseases, 11th Revision (ICD-11) since 2022. Catatonia is found in 5-18% of inpatients on psychiatric units and 3.3% of inpatients on medical units. However, in an unknown number of patients, catatonia remains unrecognized and these patients are at risk of life-threatening complications. Hence, recognizing the symptoms of catatonia early is crucial to initiate appropriate treatment to achieve a favourable outcome. Benzodiazepines such as lorazepam and diazepam, electroconvulsive therapy, and N-methyl-D-aspartate antagonists such as amantadine and memantine, are the cornerstones of catatonia therapy. In addition, dopamine-modulating second-generation antipsychotics (for example, clozapine and aripiprazole) are effective in some patient populations. Early and appropriate treatment combined with new screening assessments has the potential to reduce the high morbidity and mortality associated with catatonia in psychiatric and non-psychiatric settings.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner site Mannheim, Mannheim, Germany.
| | | | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Katharina Maria Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jo Ellen Wilson
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education and Clinical Center (GRECC), Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy
| | - Gregory Fricchione
- Benson-Henry Institute for Mind Body Medicine, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner site Mannheim, Mannheim, Germany
| | - Gabor S Ungvari
- Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Section of Psychiatry, School of Medicine, University Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Lefebvre S, Gehrig G, Nadesalingam N, Nuoffer MG, Kyrou A, Wüthrich F, Walther S. The pathobiology of psychomotor slowing in psychosis: altered cortical excitability and connectivity. Brain 2024; 147:1423-1435. [PMID: 38537253 PMCID: PMC10994557 DOI: 10.1093/brain/awad395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 04/06/2024] Open
Abstract
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Gwendolyn Gehrig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3000 Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| |
Collapse
|
3
|
Duque L, Ghafouri M, Nunez NA, Ospina JP, Philbrick KL, Port JD, Savica R, Prokop LJ, Rummans TA, Singh B. Functional neuroimaging in patients with catatonia: A systematic review. J Psychosom Res 2024; 179:111640. [PMID: 38484496 PMCID: PMC11006573 DOI: 10.1016/j.jpsychores.2024.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Catatonia is a challenging and heterogeneous neuropsychiatric syndrome of motor, affective and behavioral dysregulation which has been associated with multiple disorders such as structural brain lesions, systemic diseases, and psychiatric disorders. This systematic review summarized and compared functional neuroimaging abnormalities in catatonia associated with psychiatric and medical conditions. METHODS Using PRISMA methods, we completed a systematic review of 6 databases from inception to February 7th, 2024 of patients with catatonia that had functional neuroimaging performed. RESULTS A total of 309 studies were identified through the systematic search and 62 met the criteria for full-text review. A total of 15 studies reported patients with catatonia associated with a psychiatric disorder (n = 241) and one study reported catatonia associated with another medical condition, involving patients with N-methyl-d-aspartate receptor antibody encephalitis (n = 23). Findings varied across disorders, with hyperactivity observed in areas like the prefrontal cortex (PFC), the supplementary motor area (SMA) and the ventral pre-motor cortex in acute catatonia associated to a psychiatric disorder, hypoactivity in PFC, the parietal cortex, and the SMA in catatonia associated to a medical condition, and mixed metabolic activity in the study on catatonia linked to a medical condition. CONCLUSION Findings support the theory of dysfunction in cortico-striatal-thalamic, cortico-cerebellar, anterior cingulate-medial orbitofrontal, and lateral orbitofrontal networks in catatonia. However, the majority of the literature focuses on schizophrenia spectrum disorders, leaving the pathophysiologic characteristics of catatonia in other disorders less understood. This review highlights the need for further research to elucidate the pathophysiology of catatonia across various disorders.
Collapse
Affiliation(s)
- Laura Duque
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mohammad Ghafouri
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nicolas A Nunez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Juan Pablo Ospina
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Teresa A Rummans
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Mayo Clinic, Jacksonville, Florida
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Walther S, Nadesalingam N, Nuoffer M, Kyrou A, Wüthrich F, Lefebvre S. Structural alterations of the motor cortex and higher order cortical areas suggest early neurodevelopmental origin of catatonia in schizophrenia. Schizophr Res 2024; 263:131-138. [PMID: 36272843 DOI: 10.1016/j.schres.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
The neurobiology of catatonia is still poorly understood. Particularly structural MRI studies yielded conflicting results. Heterogeneity of findings was suggested to stem from specifics of different rating scales. This study sought to test grey matter differences between patients with catatonia, patients without catatonia, and healthy controls using the two main instruments of catatonia rating. We included 98 patients with schizophrenia spectrum disorders and 42 healthy controls. Catatonia was measured using the Bush Francis Catatonia Rating Scale and the Northoff Catatonia Rating Scale. According to these scales, patients were classified into those with and those without catatonia. We tested whole brain grey matter volume, cortical thickness, and local gyrification across groups. Both catatonia rating scales correlated at tau = 0.65 but failed to classify identical subjects as catatonia patients. However, group differences in grey matter parameters were broadly similar with either rating scale to identify catatonia cases. Catatonia patients had reduced grey matter volume compared to controls in a large network including orbitofrontal cortex, cingulate, thalamus, and amygdala. While there was no group difference in cortical thickness, catatonia patients had increased local gyrification in premotor, motor, and parietal cortices compared to controls. Hypergyrification of the motor cortex and higher order cortical areas was found in catatonia patients compared to patients without catatonia. Both catatonia rating scales find similar symptom severity and group differences in grey matter indices. Catatonia is linked to reduced grey matter volume and increased local gyrification, suggesting some impact of early neurodevelopmental insults.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Melanie Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
5
|
Foucher JR, Hirjak D, Walther S, Dormegny-Jeanjean LC, Humbert I, Mainberger O, de Billy CC, Schorr B, Vercueil L, Rogers J, Ungvari G, Waddington J, Berna F. From one to many: Hypertonia in schizophrenia spectrum psychosis an integrative review and adversarial collaboration report. Schizophr Res 2024; 263:66-81. [PMID: 37059654 DOI: 10.1016/j.schres.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Different types of resistance to passive movement, i.e. hypertonia, were described in schizophrenia spectrum disorders (SSD) long before the introduction of antipsychotics. While these have been rediscovered in antipsychotic-naïve patients and their non-affected relatives, the existence of intrinsic hypertonia vs drug-induced parkinsonism (DIP) in treated SSD remains controversial. This integrative review seeks to develop a commonly accepted framework to specify the putative clinical phenomena, highlight conflicting issues and discuss ways to challenge each hypothesis and model through adversarial collaboration. The authors agreed on a common framework inspired from systems neuroscience. Specification of DIP, locomotor paratonia (LMP) and psychomotor paratonia (PMP) identified points of disagreement. Some viewed parkinsonian rigidity to be sufficient for diagnosing DIP, while others viewed DIP as a syndrome that should include bradykinesia. Sensitivity of DIP to anticholinergic drugs and the nature of LPM and PMP were the most debated issues. It was agreed that treated SSD should be investigated first. Clinical features of the phenomena at issue could be confirmed by torque, EMG and joint angle measures that could help in challenging the selectivity of DIP to anticholinergics. LMP was modeled as the release of the reticular formation from the control of the supplementary motor area (SMA), which could be challenged by the tonic vibration reflex or acoustic startle. PMP was modeled as the release of primary motor cortex from the control of the SMA and may be informed by subclinical echopraxia. If these challenges are not met, this would put new constraints on the models and have clinical and therapeutic implications.
Collapse
Affiliation(s)
- Jack R Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU.
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany, EU
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Ludovic C Dormegny-Jeanjean
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Ilia Humbert
- CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Olivier Mainberger
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Clément C de Billy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Benoit Schorr
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France, EU; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France, EU
| | - Laurent Vercueil
- Unité de neurophysiologie clinique, CHU Grenoble Alpes, Université Grenoble Alpes, France, EU; INSERM U1216, Institut de neurosciences, Grenoble, France, EU
| | - Jonathan Rogers
- Division of Psychiatry, University College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Gabor Ungvari
- Section of Psychiatry, School of Medicine, University Notre Dame Australia, Fremantle, Australia
| | - John Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland, EU
| | - Fabrice Berna
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France, EU; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France, EU
| |
Collapse
|
6
|
Schorr B, Clauss JME, de Billy CC, Dassing R, Zinetti-Bertschy A, Domergny-Jeanjean LC, Obrecht A, Mainberger O, Schürhoff F, Foucher JR, Berna F. Subtyping chronic catatonia: Clinical and neuropsychological characteristics of progressive periodic catatonia and chronic system catatonias vs. non-catatonic schizophrenia. Schizophr Res 2024; 263:55-65. [PMID: 36411196 DOI: 10.1016/j.schres.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Catatonia has been defined by ICD-11 as a nosologically unspecific syndrome. Previous neuropsychiatric conceptions of catatonia such as Wernicke-Kleist-Leonhard's (WKL) one, have isolated chronic catatonic entities, such as progressive periodic catatonia (PPC) and chronic system catatonias (CSC). This study aimed at comparing the clinical and neuropsychological features of PPC, CSC and non-catatonic patients, all diagnosed with a schizophrenia spectrum disorder (SSD). The clinical and cognitive measures were compared among 53 SSD patients, first by separating catatonic (C-SSD, n = 27) and non-catatonic patients (NC-SSD, n = 26), and second, by separating PPC (n = 20), CSC (n = 6) and NC-SSD patients. Bayes factors were used to compare the model with 1 or 2 catatonic groups. We found that PPC had a more frequent schizo-affective presentation, higher levels of depression and less positive psychotic symptoms than both CSC and NC-SSD. CSC patients had an earlier illness onset, a poorer cognitive functioning, and higher antipsychotics doses than both PPC and NC-SSD. Most differences between C- and NC-SSD were accounted by characteristics of either PPC or CSC. The model with 2 catatonic groups clearly outperformed that with 1 catatonic group. Our results point to a substantial clinical heterogeneity of 'catatonia' within the SSD population and suggest that distinguishing (at least) 2 chronic catatonic phenotypes (PPC and CSC) may represent a relevant step to apprehend this heterogeneity. It is also a more parsimonious attempt than considering the around 32.000 distinct catatonic presentations resulting from the combinations of 3 out of 15 polythetic criteria for ICD-11 catatonia.
Collapse
Affiliation(s)
- Benoit Schorr
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, Strasbourg, France; University of Strasbourg, France; FMTS, Strasbourg, France; Fondation FondaMental, 94000 Créteil, France
| | - Julie M E Clauss
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; SAGE - CNRS UMR 7363, FMTS, University of Strasbourg, France; Fondation FondaMental, 94000 Créteil, France
| | - Clément C de Billy
- iCube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Romane Dassing
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, Strasbourg, France; Fondation FondaMental, 94000 Créteil, France
| | - Anna Zinetti-Bertschy
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Fondation FondaMental, 94000 Créteil, France
| | - Ludovic C Domergny-Jeanjean
- University of Strasbourg, France; iCube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France; FMTS, Strasbourg, France
| | - Alexandre Obrecht
- iCube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Olivier Mainberger
- iCube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Franck Schürhoff
- Fondation FondaMental, 94000 Créteil, France; Inserm U955, Translational Psychiatry Team, 94000 Créteil, France; Pôle de psychiatrie des hôpitaux universitaires Henri-Mondor, DHU Pe-PSY, Paris Est University, 94000 Créteil, France
| | - Jack R Foucher
- University of Strasbourg, France; iCube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France; FMTS, Strasbourg, France
| | - Fabrice Berna
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, Strasbourg, France; University of Strasbourg, France; FMTS, Strasbourg, France; Fondation FondaMental, 94000 Créteil, France.
| |
Collapse
|
7
|
Foucher JR, Bartsch AJ, Mainberger O, Vercueil L, de Billy CC, Obrecht A, Arcay H, Berna F, Clauss JME, Weibel S, Hanke M, Elowe J, Schorr B, Bregeon E, Braun B, Cetkovich M, Jabs BE, Dorfmeister T, Ungvari GS, Dormegny-Jeanjean LC, Pfuhlmann B. Parakinesia: A Delphi consensus report. Schizophr Res 2024; 263:45-54. [PMID: 36357299 DOI: 10.1016/j.schres.2022.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Abnormal movements are intrinsic to some forms of endogenous psychoses. Spontaneous dyskinesias are observed in drug-naïve first-episode patients and at-risk subjects. However, recent descriptions of spontaneous dyskinesias may actually represent the rediscovery of a more complex phenomenon, 'parakinesia' which was described and documented in extensive cinematographic recordings and long-term observations by German and French neuropsychiatrists decades before the introduction of antipsychotics. With the emergence of drug induced movement disorders, the description of parakinesia has been refined to emphasize the features enabling differential diagnosis with tardive dyskinesia. Unfortunately, parakinesia was largely neglected by mainstream psychiatry to the point of being almost absent from the English-language literature. With the renewed interest in motor phenomena intrinsic to SSD, it was timely not only to raise awareness of parakinesia, but also to propose a scientifically usable definition for this phenomenon. Therefore, we conducted a Delphi consensus exercise with clinicians familiar with the concept of parakinesia. The original concept was separated into hyperkinetic parakinesia (HPk) as dyskinetic-like expressive movements and parakinetic psychomotricity (PPM), i.e., patient's departing from the patient's normal motion style. HPk prevails on the upper part of the face and body, resembling expressive and reactive gestures that not only occur inappropriately but also appear distorted. Abnormal movements vary in intensity depending on the level of psychomotor arousal and are thus abated by antipsychotics. HPk frequently co-occurs with PPM, in which gestures and mimics lose their naturalness and become awkward, disharmonious, stiff, mannered, and bizarre. Patients are never spontaneously aware of HPk or PPM, and the movements are never experienced as self-dystonic or self-alien. HPk and PPM are highly specific to endogenous psychoses, in which they are acquired and progressive, giving them prognostic value. Their differential diagnoses and correspondences with current international concepts are discussed.
Collapse
Affiliation(s)
- Jack R Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France.
| | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Olivier Mainberger
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Laurent Vercueil
- Clinical Neurophysiology Unit, Univ. Grenoble Alpes, INSERM U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Clément C de Billy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Alexandre Obrecht
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Hippolyte Arcay
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France
| | - Fabrice Berna
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France
| | - Julie M E Clauss
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; SAGE - CNRS UMR 7363, FMTS, University of Strasbourg, France
| | - Sébastien Weibel
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France
| | - Markus Hanke
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Julien Elowe
- Department of Psychiatry, Prangins Psychiatric Hospital (CHUV), Prangins, Switzerland
| | - Benoit Schorr
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France
| | | | - Birgit Braun
- Abteilung für Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Regensburg, Germany
| | - Marcelo Cetkovich
- Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Burkhard E Jabs
- Klinik für Psychiatrie & Psychotherapie, Städtisches Klinikum Dresden, Dresden, Germany
| | - Thomas Dorfmeister
- Abteilung für Psychiatrie und psychotherapeutische Medizin, Landesklinikum Neunkirchen, Austria
| | - Gabor S Ungvari
- Section of Psychiatry, University Notre Dame, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Ludovic C Dormegny-Jeanjean
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Bruno Pfuhlmann
- Klinik für Psychiatrie & Psychotherapie, Städtisches Klinikum Dresden, Dresden, Germany
| |
Collapse
|
8
|
Cattarinussi G, Gugliotta AA, Hirjak D, Wolf RC, Sambataro F. Brain mechanisms underlying catatonia: A systematic review. Schizophr Res 2024; 263:194-207. [PMID: 36404217 DOI: 10.1016/j.schres.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Catatonia is a complex psychomotor disorder characterized by motor, affective, and behavioral symptoms. Despite being known for almost 150 years, its pathomechanisms are still largely unknown. METHODS A systematic research on PubMed, Web of Science, and Scopus was conducted to identify neuroimaging studies conducted on group or single individuals with catatonia. Overall, 33 studies employing structural magnetic resonance imaging (sMRI, n = 11), functional magnetic resonance imaging (fMRI, n = 10), sMRI and fMRI (n = 2), functional near-infrared spectroscopy (fNIRS, n = 1), single positron emission computer tomography (SPECT, n = 4), positron emission tomography (PET, n = 4), and magnetic resonance spectroscopy (MRS, n = 1), and 171 case reports were retrieved. RESULTS Observational sMRI studies showed numerous brain changes in catatonia, including diffuse atrophy and signal hyperintensities, while case-control studies reported alterations in fronto-parietal and limbic regions, the thalamus, and the striatum. Task-based and resting-state fMRI studies found abnormalities located primarily in the orbitofrontal, medial prefrontal, motor cortices, cerebellum, and brainstem. Lastly, metabolic and perfusion changes were observed in the basal ganglia, prefrontal, and motor areas. Most of the case-report studies described widespread white matter lesions and frontal, temporal, or basal ganglia hypoperfusion. CONCLUSIONS Catatonia is characterized by structural, functional, perfusion, and metabolic cortico-subcortical abnormalities. However, the majority of studies and case reports included in this systematic review are affected by considerable heterogeneity, both in terms of populations and neuroimaging techniques, which calls for a cautious interpretation. Further elucidation, through future neuroimaging research, could have great potential to improve the description of the neural motor and psychomotor mechanisms underlying catatonia.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | | | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert C Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Dhossche D, de Billy C, Laurent-Levinson C, Le Normand MT, Recasens C, Robel L, Philippe A. Early-onset catatonia associated with SHANK3 mutations: looking at the autism spectrum through the prism of psychomotor phenomena. Front Psychiatry 2023; 14:1186555. [PMID: 37810596 PMCID: PMC10557257 DOI: 10.3389/fpsyt.2023.1186555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Individuals with Phelan-McDermid syndrome (PMS) present with a wide range of diagnoses: autism spectrum disorder, intellectual disability, or schizophrenia. Differences in the genetic background could explain these different neurodevelopmental trajectories. However, a more parsimonious hypothesis is to consider that they may be the same phenotypic entity. Catatonic disturbances occasionally reported from adolescence onwards in PMS prompts exploration of the hypothesis that this clinical entity may be an early-onset form of catatonia. The largest cohort of children with childhood catatonia was studied by the Wernicke-Kleist-Leonhard school (WKL school), which regards catatonia as a collection of qualitative abnormalities of psychomotricity that predominantly affecting involuntary motricity (reactive and expressive). The aim of this study was to investigate the presence of psychomotor signs in three young adults carrying a mutation or intragenic deletion of the SHANK3 gene through the prism of the WKL school conception of catatonia. Methods This study was designed as an exploratory case study. Current and childhood psychomotor phenomena were investigated through semi-structured interviews with the parents, direct interaction with the participants, and the study of documents reporting observations of the participants at school or by other healthcare professionals. Results The findings show catatonic manifestations from childhood that evolved into a chronic form, with possible phases of sub-acute exacerbations starting from adolescence. Conclusion The presence of catatonic symptoms from childhood associated with autistic traits leads us to consider that this singular entity fundamentally related to SHANK3 mutations could be a form of early-onset catatonia. Further case studies are needed to confirm our observations.
Collapse
Affiliation(s)
- Dirk Dhossche
- Department of Adolescent Psychiatry, Inland Northwest Behavioral Health, Spokane, WA, United States
| | - Clément de Billy
- CEMNIS – Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Claudine Laurent-Levinson
- Faculté de Médecine Sorbonne Université, Groupe de Recherche Clinique no. 15 – Troubles Psychiatriques et Développement (PSYDEV), Paris, France
- Centre de Référence des Maladies Rares à Expression Psychiatrique, Département de Psychiatrie de l’enfant et l’adolescent, Hôpital Pitié-Salpétrière, Paris, France
| | - Marie T. Le Normand
- Institut de l’Audition, Institut Pasteur, Paris, France
- Laboratoire de Psychopathologie et Processus de Santé, Université de Paris Cité, Paris, France
| | - Christophe Recasens
- Service universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Centre hospitalier Intercommunal de Créteil, Créteil, France
| | - Laurence Robel
- Unité de Psychopathologie de l’Enfant et de l’Adolescent, GHU Paris, Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Anne Philippe
- Université Paris Cité, Paris, France
- INSERM U1163 Institut Imagine, Paris, France
| |
Collapse
|
10
|
Martínez DR. One hundred and fifty years of hebephrenia. A review. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2023; 52:139-145. [PMID: 37453821 DOI: 10.1016/j.rcpeng.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 07/18/2023]
Abstract
INTRODUCTION The publication of Hecker's article on hebephrenia in 1871 was a fundamental milestone for clinical psychiatry. Despite the initial recognition, many voices were raised against this diagnostic category and its limits were attenuated throughout the 20th century until its disappearance at the beginning of this century (along with the other subtypes of schizophrenia) in the DSM and ICD. DISCUSSION However, given the consistency of the clinical picture, there is the possibility of other criteria emerging that would lead its systematic study to continue or recommence. In this sense, the concepts of deficit schizophrenia, hebephrenia as a replacement for schizophrenia as a whole, and Leonhard's hebephrenias as systematic schizophrenias stand out. This article discusses the main diagnostic conflicts of the category of hebephrenia over time, with emphasis on the problems of recent decades. CONCLUSIONS The concept of hebephrenia has begun to be revalued in recent years, and the concepts of deficit schizophrenia, of hebephrenia as a major category, and of systematic hebephrenias allow further investigation of this foundational picture of clinical psychiatry.
Collapse
Affiliation(s)
- Daniel R Martínez
- Servicio de Psiquiatría, Hospital Borda, Buenos Aires, Argentina; Clínica Psiquiátrica, Escuela de Posgrado, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Nadesalingam N, Lefebvre S, Alexaki D, Baumann Gama D, Wüthrich F, Kyrou A, Kerkeni H, Kalla R, Walther S. The Behavioral Mapping of Psychomotor Slowing in Psychosis Demonstrates Heterogeneity Among Patients Suggesting Distinct Pathobiology. Schizophr Bull 2023; 49:507-517. [PMID: 36413085 PMCID: PMC10016403 DOI: 10.1093/schbul/sbac170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Psychomotor slowing (PS) occurs in up to half of schizophrenia patients and is linked to poorer outcomes. As standard treatment fails to improve PS, novel approaches are needed. Here, we applied the RDoC framework using 3 units of analysis, ie, behavior, self-report, and physiology to test, whether patients with PS are different from patients without PS and controls. METHODS Motor behavior was compared between 71 schizophrenia patients with PS, 25 without PS, and 42 healthy controls (HC) using 5 different measures: (1) for behavior, an expert rating scale: Motor score of the Salpêtrière Retardation Rating Scale, (2) for self-report, the International Physical Activity Questionnaire; and for physiology, (3) Actigraphy, which accounts for gross motor behavior, (4) Gait velocity, and (5) coin rotation task to assess manual dexterity. RESULTS The ANCOVAs comparing the 3 groups revealed differences between patients with PS and HC in expert ratings, self-report, and instrumental measures (all P ≤ .001). Patients with PS also scored higher in expert ratings and had lower instrumental activity levels compared to patients without PS (all P ≤ .045). Instrumental activity levels correlated with an expert rating of PS (rho = -0.51, P-fdr corrected <.001) and classified similarly at 72% accuracy. CONCLUSIONS PS is characterized by slower gait, lower activity levels, and slower finger movements compared to HC. However, only actigraphy and observer ratings enable to clearly disentangle PS from non-PS patients. Actigraphy may become the standard assessment of PS in neuroimaging studies and clinical trials.
Collapse
Affiliation(s)
- Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stéphanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Klinik Sonnenhalde AG Psychiatrie und Psychotherapie, Basel, Switzerland
| | - Daniel Baumann Gama
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Hassen Kerkeni
- Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Roger Kalla
- Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Percie du Sert O, Unrau J, Gauthier CJ, Chakravarty M, Malla A, Lepage M, Raucher-Chéné D. Cerebral blood flow in schizophrenia: A systematic review and meta-analysis of MRI-based studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110669. [PMID: 36341843 DOI: 10.1016/j.pnpbp.2022.110669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Schizophrenia-spectrum disorders (SSD) represent one of the leading causes of disability worldwide and are usually underpinned by neurodevelopmental brain abnormalities observed on a structural and functional level. Nuclear medicine imaging studies of cerebral blood flow (CBF) have already provided insights into the pathophysiology of these disorders. Recent developments in non-invasive MRI techniques such as arterial spin labeling (ASL) have allowed broader examination of CBF across SSD prompting us to conduct an updated literature review of MRI-based perfusion studies. In addition, we conducted a focused meta-analysis of whole brain studies to provide a complete picture of the literature on the topic. METHODS A systematic OVID search was performed in Embase, MEDLINEOvid, and PsycINFO. Studies eligible for inclusion in the review involved: 1) individuals with SSD, first-episode psychosis or clinical-high risk for psychosis, or; 2) had healthy controls for comparison; 3) involved MRI-based perfusion imaging methods; and 4) reported CBF findings. No time span was specified for the database queries (last search: 08/2022). Information related to participants, MRI techniques, CBF analyses, and results were systematically extracted. Whole-brain studies were then selected for the meta-analysis procedure. The methodological quality of each included studies was assessed. RESULTS For the systematic review, the initial Ovid search yielded 648 publications of which 42 articles were included, representing 3480 SSD patients and controls. The most consistent finding was that negative symptoms were linked to cortical fronto-limbic hypoperfusion while positive symptoms seemed to be associated with hyperperfusion, notably in subcortical structures. The meta-analysis integrated results from 13 whole-brain studies, across 426 patients and 401 controls, and confirmed the robustness of the hypoperfusion in the left superior and middle frontal gyri and right middle occipital gyrus while hyperperfusion was found in the left putamen. CONCLUSION This updated review of the literature supports the implication of hemodynamic correlates in the pathophysiology of psychosis symptoms and disorders. A more systematic exploration of brain perfusion could complete the search of a multimodal biomarker of SSD.
Collapse
Affiliation(s)
- Olivier Percie du Sert
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Joshua Unrau
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Claudine J Gauthier
- Concordia University, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Mallar Chakravarty
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ashok Malla
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Martin Lepage
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Delphine Raucher-Chéné
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada; University of Reims Champagne-Ardenne, Cognition, Health, and Society Laboratory (EA 6291), Reims, France; Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| |
Collapse
|
13
|
Psychomotor slowing alters gait velocity, cadence, and stride length and indicates negative symptom severity in psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:116. [PMID: 36585399 PMCID: PMC9803648 DOI: 10.1038/s41537-022-00324-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a severe mental disorder, in which 50% of the patients present with motor abnormalities such as psychomotor slowing. Slow spontaneous gait has been reported in schizophrenia. However, comprehensive objective instrumental assessments of multiple gait conditions are missing. Finally, the specific gait patterns of subjects with psychomotor slowing are still unknown. Therefore, this study aimed to objectively assess multiple gait parameters at different walking conditions in patients with schizophrenia with and without psychomotor slowing. Also, we hypothesised gait impairments to correlate with expert ratings of hypokinetic movement disorders and negative symptoms. We collected gait data (GAITRite®) in 70 patients with psychomotor slowing (SRRS (Salpetriere retardation rating scale) ≥15), 22 non-psychomotor slowed patients (SRRS < 15), and 42 healthy controls. Participants performed four walking conditions (self-selected speed, maximum speed, head reclined, and eyes closed) and six gait parameters were extracted (velocity, cadence, stride length, functional ambulation profile (FAP), and variance of stride length and time). Patients with psychomotor slowing presented slower velocity, lower cadence, and shorter stride length in all walking conditions compared to healthy controls, with the non-slowed patients in an intermediate position (all F > 16.18, all p < 0.001). Secondly, slower velocity was associated with more severe hypokinetic movement disorders and negative symptoms. In conclusion, gait impairments exist in a spectrum with healthy controls on one end and patients with psychomotor slowing on the other end. Patients with psychomotor slowing are specifically impaired when an adaptation of gait patterns is required, contributing to the deleterious effects of sedentary behaviours.
Collapse
|
14
|
A neuropsychological study on Leonhard's nosological system. Eur Arch Psychiatry Clin Neurosci 2022; 272:427-436. [PMID: 34269880 DOI: 10.1007/s00406-021-01298-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/04/2021] [Indexed: 12/17/2022]
Abstract
Phenotype validation of endogenous psychosis is a problem that remains to be solved. This study investigated the neuropsychological performance of endogenous psychosis subtypes according to Wernicke-Kleist-Leonhard's classification system (WKL). The participants included consecutive admissions of patients with schizophrenia spectrum disorder or mood disorder with psychotic symptoms (N = 98) and healthy comparison subjects (N = 50). The patients were assessed by means of semi-structured interviews and diagnosed through the WKL system into three groups: a manic-depressive illness and cycloid psychosis group (MDC), unsystematic schizophrenia (USch) and systematic schizophrenia (SSch). All the participants completed a comprehensive neuropsychological battery. The three Leonhard's psychosis subtypes showed a common neuropsychological profile with differences in the severity of impairment relative to healthy controls. MDC patients showed better performance on premorbid intelligence, verbal memory and global cognitive index than USch and SSch patients, and they showed better performance on processing speed, and working memory than SSch patients. USch patients outperformed SSch patients in verbal memory, working memory and global cognitive index. Neuropsychological performance showed a modest accuracy for classification into the WKL nosology. Our results suggest the existence of a common profile of cognitive impairment cutting across WKL subtypes of endogenous psychosis but with significant differences on a severity continuum. In addition, classification accuracy in the three WKL subtypes by means of neuropsychological performance was modest, ranging between 40 and 64% of correctly classified patients.
Collapse
|
15
|
The polysemous concepts of psychomotricity and catatonia: A European multi-consensus perspective. Eur Neuropsychopharmacol 2022; 56:60-73. [PMID: 34942409 DOI: 10.1016/j.euroneuro.2021.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
Current classification systems use the terms "catatonia" and "psychomotor phenomena" as mere a-theoretical descriptors, forgetting about their theoretical embedment. This was the source of misunderstandings among clinicians and researchers of the European collaboration on movement and sensorimotor/psychomotor functioning in schizophrenia and other psychoses or ECSP. Here, we review the different perspectives, their historical roots and highlight discrepancies. In 1844, Wilhelm Griesinger coined the term "psychic-motor" to name the physiological process accounting for volition. While deriving from this idea, the term "psychomotor" actually refers to systems that receive miscellaneous intrapsychic inputs, convert them into coherent behavioral outputs send to the motor systems. More recently, the sensorimotor approach has drawn on neuroscience to redefine the motor signs and symptoms observed in psychoses. In 1874, Karl Kahlbaum conceived catatonia as a brain disease emphasizing its somatic - particularly motor - features. In conceptualizing dementia praecox Emil Kraepelin rephrased catatonic phenomena in purely mental terms, putting aside motor signs which could not be explained in this way. Conversely, the Wernicke-Kleist-Leonhard school pursued Kahlbaum's neuropsychiatric approach and described many new psychomotor signs, e.g. parakinesias, Gegenhalten. They distinguished 8 psychomotor phenotypes of which only 7 are catatonias. These barely overlap with consensus classifications, raising the risk of misunderstanding. Although coming from different traditions, the authors agreed that their differences could be a source of mutual enrichment, but that an important effort of conceptual clarification remained to be made. This narrative review is a first step in this direction.
Collapse
|
16
|
Hirjak D, Meyer-Lindenberg A, Sambataro F, Fritze S, Kukovic J, Kubera KM, Wolf RC. Progress in sensorimotor neuroscience of schizophrenia spectrum disorders: Lessons learned and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110370. [PMID: 34087392 DOI: 10.1016/j.pnpbp.2021.110370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
The number of neuroimaging studies on movement disorders, sensorimotor, and psychomotor functioning in schizophrenia spectrum disorders (SSD) has steadily increased over the last two decades. Accelerated by the addition of the "sensorimotor domain" to the Research Domain Criteria (RDoC) framework in January 2019, neuroscience research on the role of sensorimotor dysfunction in SSD has gained greater scientific and clinical relevance. To draw attention to recent rapid progress in the field, we performed a triennial systematic review (PubMed search from January 1st, 2018 through December 31st, 2020), in which we highlight recent neuroimaging findings and discuss methodological pitfalls as well as challenges for future research. The identified magnetic resonance imaging (MRI) studies suggest that sensorimotor abnormalities in SSD are related to cerebello-thalamo-cortico-cerebellar network dysfunction. Longitudinal and interventional studies highlight the translational potential of the sensorimotor domain as putative biomarkers for treatment response and as targets for non-invasive neurostimulation techniques in SSD.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Katharina M Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Catatonia: Clinical Overview of the Diagnosis, Treatment, and Clinical Challenges. Neurol Int 2021; 13:570-586. [PMID: 34842777 PMCID: PMC8628989 DOI: 10.3390/neurolint13040057] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022] Open
Abstract
Catatonia is a syndrome that has been associated with several mental illness disorders but that has also presented as a result of other medical conditions. Schizophrenia and other psychiatric disorders such as mania and depression are known to be associated with catatonia; however, several case reports have been published of certain medical conditions inducing catatonia, including hyponatremia, cerebral venous sinus thrombosis, and liver transplantation. Neuroleptic Malignant Syndrome and anti-NMDA receptor encephalitis are also prominent causes of catatonia. Patients taking benzodiazepines or clozapine are also at risk of developing catatonia following the withdrawal of these medications—it is speculated that the prolonged use of these medications increases gamma-aminobutyric acid (GABA) activity and that discontinuation may increase excitatory neurotransmission, leading to catatonia. The treatment of catatonia often involves the use of benzodiazepines, such as lorazepam, that can be used in combination therapy with antipsychotics. Definitive treatment may be found with electroconvulsive therapy (ECT). Aberrant neuronal activity in different motor pathways, defective neurotransmitter regulation, and impaired oligodendrocyte function have all been proposed as the pathophysiology behind catatonia. There are many clinical challenges that come with catatonia and, as early treatment is associated with better outcomes, it becomes imperative to understand these challenges. The purpose of this manuscript is to provide an overview of these challenges and to look at clinical studies regarding the pathophysiology, diagnosis, and treatment of as well as the complications and risk factors associated with catatonia.
Collapse
|
18
|
Martínez DR. One Hundred and Fifty Years of Hebephrenia. A Review. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2021; 52:S0034-7450(21)00137-2. [PMID: 34446257 DOI: 10.1016/j.rcp.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The publication of Hecker's article on hebephrenia in 1871 was a fundamental milestone for clinical psychiatry. Despite the initial recognition, many voices were raised against this diagnostic category and its limits were attenuated throughout the 20th century until its disappearance at the beginning of this century (along with the other subtypes of schizophrenia) in the DSM and ICD. DISCUSSION However, given the consistency of the clinical picture, there is the possibility of other criteria emerging that would lead its systematic study to continue or recommence. In this sense, the concepts of deficit schizophrenia, hebephrenia as a replacement for schizophrenia as a whole, and Leonhard's hebephrenias as systematic schizophrenias stand out. This article discusses the main diagnostic conflicts of the category of hebephrenia over time, with emphasis on the problems of recent decades. CONCLUSIONS The concept of hebephrenia has begun to be revalued in recent years, and the concepts of deficit schizophrenia, of hebephrenia as a major category, and of systematic hebephrenias allow further investigation of this foundational picture of clinical psychiatry.
Collapse
Affiliation(s)
- Daniel R Martínez
- Servicio de Psiquiatría, Hospital Borda, Buenos Aires, Argentina; Clínica Psiquiátrica, Escuela de Posgrado, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina.
| |
Collapse
|
19
|
de Crespin de Billy C, Jeanjean LC, Obrecht A, Mainberger O, Foucher JR. Catatonia: from pathology to brain imaging. Lancet Psychiatry 2021; 8:653-654. [PMID: 34303406 DOI: 10.1016/s2215-0366(21)00239-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Clément de Crespin de Billy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS (UF 4768) Non-invasive Neuromodulation Center, University Hospital Strasbourg, BP 426, 67 091 Strasbourg, France.
| | - Ludovic Christophe Jeanjean
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS (UF 4768) Non-invasive Neuromodulation Center, University Hospital Strasbourg, BP 426, 67 091 Strasbourg, France
| | - Alexandre Obrecht
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS (UF 4768) Non-invasive Neuromodulation Center, University Hospital Strasbourg, BP 426, 67 091 Strasbourg, France
| | - Olivier Mainberger
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS (UF 4768) Non-invasive Neuromodulation Center, University Hospital Strasbourg, BP 426, 67 091 Strasbourg, France
| | - Jack René Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS (UF 4768) Non-invasive Neuromodulation Center, University Hospital Strasbourg, BP 426, 67 091 Strasbourg, France
| |
Collapse
|
20
|
Foucher JR, de Billy C, Jeanjean LC, Obrecht A, Mainberger O, Clauss JME, Schorr B, Lupu MC, de Sousa PL, Lamy J, Noblet V, Sauleau EA, Landré L, Berna F. A Brain Imaging-Based Diagnostic Biomarker for Periodic Catatonia: Preliminary Evidence Using a Bayesian Approach. Neuropsychobiology 2021; 79:352-365. [PMID: 31505494 DOI: 10.1159/000501830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022]
Abstract
Periodic catatonia (PC) is a psychomotor phenotype with a progressive-remitting course. While it can fit any disorder diagnosis of the schizoaffective spectrum, its core features consist of a mix of hypo- and hyperkinesias resulting in distortions of expressive movements such as grimacing and parakinesias. The replication of cerebral blood flow (CBF) increases in the left supplementary motor area (L-SMA) and lateral premotor cortex (L-LPM) in acute and remitting PC patients indicates that these increases could be used as diagnostic biomarkers. In this proof-of-concept study, 2 different MRI sequences were repeated on 3 separate days to get reliable measurement values of CBF in 9 PC and 26 non-PC patients during different cognitive tasks. Each patient was compared to 37 controls. In L-SMA [-9; +10; +60] and L-LPM [-46; -12; +43], a test was positive if the t value was >2.02 (α < 0.05; two tailed). The measurements had good analytical performance. Regarding the tests, their sensitivities and specificities were significantly different from the chance level on both measures, except for L-SMA sensitivities. When combining all the tests, among regions and methods, sensitivity was 98% (95% credible interval [CI] 76-100%) and specificity 88% (72-97%). Bayesian inferences of its negative predictive values for PC were >95% regardless of the context, while its positive predictive values reached 94% but only when used in combination with clinical criteria. The case-by-case analysis suggests that non-PC patients with neurological motor deficits are at risk to be false positive.
Collapse
Affiliation(s)
- Jack René Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France, .,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France,
| | - Clément de Billy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France.,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Ludovic Christophe Jeanjean
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France.,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Alexandre Obrecht
- CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France.,Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France
| | - Olivier Mainberger
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France.,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Julie Marie Estelle Clauss
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France.,SAGE - CNRS UMR 7363, FMTS, University of Strasbourg, Strasbourg, France
| | - Benoit Schorr
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France.,Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, Strasbourg, France
| | | | | | - Julien Lamy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Vincent Noblet
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Erik André Sauleau
- Biostatistical Laboratory, iCube - CNRS UMR 7357, University of Strasbourg, Strasbourg, France
| | - Lionel Landré
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Fabrice Berna
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France.,Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Walther S, van Harten PN, Waddington JL, Cuesta MJ, Peralta V, Dupin L, Foucher JR, Sambataro F, Morrens M, Kubera KM, Pieters LE, Stegmayer K, Strik W, Wolf RC, Hirjak D. Movement disorder and sensorimotor abnormalities in schizophrenia and other psychoses - European consensus on assessment and perspectives. Eur Neuropsychopharmacol 2020; 38:25-39. [PMID: 32713718 DOI: 10.1016/j.euroneuro.2020.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Over the last three decades, movement disorder as well as sensorimotor and psychomotor functioning in schizophrenia (SZ) and other psychoses has gained greater scientific and clinical relevance as an intrinsic component of the disease process of psychotic illness; this extends to early psychosis prediction, early detection of motor side effects of antipsychotic medication, clinical outcome monitoring, treatment of psychomotor syndromes (e.g. catatonia), and identification of new targets for non-invasive brain stimulation. In 2017, a systematic cooperation between working groups interested in movement disorder and sensorimotor/psychomotor functioning in psychoses was initiated across European universities. As a first step, the members of this group would like to introduce and define the theoretical aspects of the sensorimotor domain in SZ and other psychoses. This consensus paper is based on a synthesis of scientific evidence, good clinical practice and expert opinions that were discussed during recent conferences hosted by national and international psychiatric associations. While reviewing and discussing the recent theoretical and experimental work on neural mechanisms and clinical implications of sensorimotor behavior, we here seek to define the key principles and elements of research on movement disorder and sensorimotor/psychomotor functioning in psychotic illness. Finally, the members of this European group anticipate that this consensus paper will stimulate further multimodal and prospective studies on hypo- and hyperkinetic movement disorders and sensorimotor/psychomotor functioning in SZ and other psychotic disorders.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Peter N van Harten
- Psychiatric Center GGz Centraal, Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Spain. Instituto de Investigación Sanitaria de Navarra (IdisNa), Spain
| | - Victor Peralta
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain, Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Lucile Dupin
- Institut de Psychiatrie et Neurosciences de Paris, INSERM U1266, Université de Paris, Paris, France
| | - Jack R Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Manuel Morrens
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Lydia E Pieters
- Psychiatric Center GGz Centraal, Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - R Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
22
|
Haroche A, Rogers J, Plaze M, Gaillard R, Williams SC, Thomas P, Amad A. Brain imaging in catatonia: systematic review and directions for future research. Psychol Med 2020; 50:1585-1597. [PMID: 32539902 DOI: 10.1017/s0033291720001853] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Catatonia is a frequent, complex and severe identifiable syndrome of motor dysregulation. However, its pathophysiology is poorly understood. METHODS We aimed to provide a systematic review of all brain imaging studies (both structural and functional) in catatonia. RESULTS We identified 137 case reports and 18 group studies representing 186 individual patients with catatonia. Catatonia is often associated with brain imaging abnormalities (in more than 75% of cases). The majority of the case reports show diffuse lesions of white matter, in a wide range of brain regions. Most of the case reports of functional imaging usually show frontal, temporal, or basal ganglia hypoperfusion. These abnormalities appear to be alleviated after successful treatment of clinical symptoms. Structural brain magnetic resonance imaging studies are very scarce in the catatonia literature, mostly showing diffuse cerebral atrophy. Group studies assessing functional brain imaging after catatonic episodes show that emotional dysregulation is related to the GABAergic system, with hypoactivation of orbitofrontal cortex, hyperactivation of median prefrontal cortex, and dysconnectivity between frontal and motor areas. CONCLUSION In catatonia, brain imaging is abnormal in the majority of cases, and abnormalities more frequently diffuse than localised. Brain imaging studies published so far suffer from serious limitations and for now the different models presented in the literature do not explain most of the cases. There is an important need for further studies including a better clinical characterisation of patients with catatonia, functional imaging with concurrent catatonic symptoms and the use of novel brain imaging techniques.
Collapse
Affiliation(s)
- Alexandre Haroche
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France
| | - Jonathan Rogers
- Division of Psychiatry, University College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Marion Plaze
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France
| | - Raphaël Gaillard
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France
| | - Steve Cr Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pierre Thomas
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Ali Amad
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| |
Collapse
|
23
|
Lefebvre S, Pavlidou A, Walther S. What is the potential of neurostimulation in the treatment of motor symptoms in schizophrenia? Expert Rev Neurother 2020; 20:697-706. [DOI: 10.1080/14737175.2020.1775586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stephanie Lefebvre
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Anastasia Pavlidou
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Bases épistémologiques de la recherche sur les psychoses. Quelle solution pour le choc des paradigmes? ANNALES MEDICO-PSYCHOLOGIQUES 2020. [DOI: 10.1016/j.amp.2018.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Viher PV, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Walther S. Altered diffusion in motor white matter tracts in psychosis patients with catatonia. Schizophr Res 2020; 220:210-217. [PMID: 32295753 DOI: 10.1016/j.schres.2020.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 01/25/2023]
Abstract
Catatonia is a complex psychomotor symptom frequently observed in schizophrenia. Neural activity within the motor system is altered in catatonia. Likewise, white matter (WM) is also expected to be abnormal. The aim of this study was to test, if schizophrenia patients with catatonia show specific WM alterations. Forty-eight patients with schizophrenia and 43 healthy controls were included. Catatonia was currently present in 13 patients with schizophrenia. Tract-Based Spatial Statistics was used to test for differences in fractional anisotropy (FA) in the whole brain between the three groups. We detected a group effect (F-test) of WM within the corpus callosum (CC). In the t-test, patients with catatonia showed higher FA in many left lateralized WM clusters involved in motor behaviour compared to patients without catatonia, including the CC, internal and external capsule, superior longitudinal fascicle (SLF) and corticospinal tract (CST). Similarly, patients with catatonia showed also higher FA in the left internal capsule and left CST compared to healthy controls. In contrast, the group comparison between patients without catatonia and healthy controls revealed lower FA in many right lateralized clusters, comprising the CC, internal capsule, SLF, and inferior longitudinal fascicle in patients without catatonia. Our results are in line with the notion of an altered motor system in catatonia. Thus, our study provides evidence for increased WM connectivity, especially in motor tracts in schizophrenia patients with catatonia.
Collapse
Affiliation(s)
- Petra V Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Osborne KJ, Walther S, Shankman SA, Mittal VA. Psychomotor Slowing in Schizophrenia: Implications for Endophenotype and Biomarker Development. Biomark Neuropsychiatry 2020; 2:100016. [PMID: 33738459 PMCID: PMC7963400 DOI: 10.1016/j.bionps.2020.100016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Motor abnormalities (e.g., dyskinesia, psychomotor slowing, neurological soft signs) are core features of schizophrenia that occur independent of drug treatment and are associated with the genetic vulnerability and pathophysiology for the illness. Among this list, psychomotor slowing in particular is one of the most consistently observed and robust findings in the field. Critically, psychomotor slowing may serve as a uniquely promising endophenotype and/or biomarker for schizophrenia considering it is frequently observed in those with genetic vulnerability for the illness, predicts transition in subjects at high-risk for the disorder, and is associated with symptoms and recovery in patients. The purpose of the present review is to provide an overview of the history of psychomotor slowing in psychosis, discuss its possible neural underpinnings, and review the current literature supporting slowing as a putative endophenotype and/or biomarker for the illness. This review summarizes substantial evidence from a diverse array of methodologies and research designs that supports the notion that psychomotor slowing not only reflects genetic vulnerability, but is also sensitive to disease processes and the pathophysiology of the illness. Furthermore, there are unique deficits across the cognitive (prefix "psycho") and motor execution (root word "motor") aspects of slowing, with cognitive processes such as planning and response selection being particularly affected. These findings suggest that psychomotor slowing may serve as a promising endophenotype and biomarker for schizophrenia that may prove useful for identifying individuals at greatest risk and tracking the course of the illness and recovery.
Collapse
Affiliation(s)
- K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Sebastian Walther
- University of Bern, University Hospital of Psychiatry, Translational Research Center, Bern, Switzerland
| | - Stewart A. Shankman
- Northwestern University, Department of Psychology, Evanston, IL, USA
- Northwestern University, Department of Psychiatry, Chicago, IL, USA
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Evanston, IL, USA
- Northwestern University, Department of Psychiatry, Chicago, IL, USA
- Northwestern University, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
27
|
Walther S, Alexaki D, Schoretsanitis G, Weiss F, Vladimirova I, Stegmayer K, Strik W, Schäppi L. Inhibitory Repetitive Transcranial Magnetic Stimulation to Treat Psychomotor Slowing: A Transdiagnostic, Mechanism-Based Randomized Double-Blind Controlled Trial. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Psychomotor slowing is frequently distressing patients with depression and schizophrenia. Increased neural activity within premotor cortices is linked to psychomotor slowing. This transdiagnostic study tested whether add-on inhibitory repetitive transcranial magnetic stimulation (rTMS) of the supplementary motor area (SMA) may alleviate psychomotor slowing. Forty-five patients with severe psychomotor slowing (26 psychosis, 19 major depression) were randomized in this transdiagnostic, double-blind, parallel-group, sham-controlled trial of 15 daily sessions of add-on rTMS over 3 weeks. Treatment arms included inhibitory 1 Hz stimulation of the SMA, facilitatory intermittent theta burst stimulation (iTBS) of the SMA, facilitatory 15 Hz stimulation of the left dorsolateral prefrontal cortex (DLPFC), and sham stimulation of the occipital cortex. The primary outcome was response (>30% reduction from baseline) according to the Salpêtrière Retardation Rating Scale (SRRS). Secondary outcomes were course of SRRS and further symptom rating scales. Last-observation carried forward method was applied to all subjects with baseline data. Response rates differed between protocols: 82% with inhibitory 1 Hz rTMS of the SMA, 0% with facilitatory iTBS of the SMA, 30% with sham, and 33% with 15 Hz DLPFC rTMS (χ 2 = 16.6, P < .001). Dropouts were similarly distributed across protocols. Response rates were similar in the completer analysis. This transdiagnostic trial of rTMS demonstrates that inhibitory SMA stimulation may ameliorate psychomotor slowing in severely ill patients. It further provides proof-of-concept that motor inhibition is linked to increased neural activity in the SMA because the inhibitory protocol performed best in reducing symptoms.
Trial registration: NCT03275766 (www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Georgios Schoretsanitis
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY
| | - Florian Weiss
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Irena Vladimirova
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Foucher JR, Gawlik M, Roth JN, de Crespin de Billy C, Jeanjean LC, Obrecht A, Mainberger O, Clauss JME, Elowe J, Weibel S, Schorr B, Cetkovich M, Morra C, Rebok F, Ban TA, Bollmann B, Roser MM, Hanke MS, Jabs BE, Franzek EJ, Berna F, Pfuhlmann B. Wernicke-Kleist-Leonhard phenotypes
of endogenous psychoses: a review of their validity
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:37-49. [PMID: 32699504 PMCID: PMC7365293 DOI: 10.31887/dcns.2020.22.1/jfoucher] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
While the ICD-DSM paradigm has been a major advance in clinical psychiatry, its usefulness for biological psychiatry is debated. By defining consensus-based disorders rather than empirically driven phenotypes, consensus classifications were not an implementation of the biomedical paradigm. In the field of endogenous psychoses, the Wernicke-Kleist-Leonhard (WKL) pathway has optimized the descriptions of 35 major phenotypes using common medical heuristics on lifelong diachronic observations. Regarding their construct validity, WKL phenotypes have good reliability and predictive and face validity. WKL phenotypes come with remarkable evidence for differential validity on age of onset, familiality, pregnancy complications, precipitating factors, and treatment response. Most impressive is the replicated separation of high- and low-familiality phenotypes. Created in the purest tradition of the biomedical paradigm, the WKL phenotypes deserve to be contrasted as credible alternatives with other approaches currently under discussion.
.
Collapse
Affiliation(s)
- Jack R Foucher
- ICube - CNRS UMR 7357, neurophysiology, FMTS, University of Strasbourg, France ; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Micha Gawlik
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Julian N Roth
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Clément de Crespin de Billy
- ICube - CNRS UMR 7357, neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Ludovic C Jeanjean
- IICube - CNRS UMR 7357, neurophysiology, FMTS, University of Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Alexandre Obrecht
- ICube - CNRS UMR 7357, neurophysiology, FMTS, University of Strasbourg, France; Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France
| | - Olivier Mainberger
- ICube - CNRS UMR 7357, neurophysiology, FMTS, University of Strasbourg, France. CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France
| | - Julie M E Clauss
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France. SAGE - CNRS UMR 7363, FMTS, University of Strasbourg, France
| | - Julien Elowe
- Department of Psychiatry, Prangins Psychiatric Hospital (CHUV), Route de Benex, Prangins, Switzerland
| | - Sébastien Weibel
- IPôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France
| | - Benoit Schorr
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France
| | - Marcelo Cetkovich
- Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Carlos Morra
- ICube - CNRS UMR 7357, neurophysiology, FMTS, University of StInstitute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Sanatorio Morra, Córdoba, Argentina
| | - Federico Rebok
- "Servicio de Emergencia", Acute Inpatient Unit, Moyano Neuropsychiatric Hospital, Buenos Aires, Argentina
| | - Thomas A Ban
- International Network for the History of Neuropsychopharmacology (INHN), Córdoba, Argentina
| | - Barbara Bollmann
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Berlin, Germany
| | - Mathilde M Roser
- Department of Psychiatry, Mondor Hospital France, Creteil, France
| | - Markus S Hanke
- Universitäre psychiatrische Dienste Bern, Spiez, Switzerland
| | - Burkhard E Jabs
- Klinik für Psychiatrie and Psychotherapie, Städtisches Klinikum Dresden, Dresden, Germany
| | - Ernst J Franzek
- Yes We Can Clinics, Department of Research and Development, Eindhoven, The Netherlands
| | - Fabrice Berna
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany; Department of Psychiatry, Prangins Psychiatric Hospital (CHUV), Route de Benex, Prangins, Switzerland
| | - Bruno Pfuhlmann
- IKlinik für Psychiatrie and Psychotherapie, Städtisches Klinikum Dresden, Dresden, Germany
| |
Collapse
|
29
|
Walther S, Stegmayer K, Wilson JE, Heckers S. Structure and neural mechanisms of catatonia. Lancet Psychiatry 2019; 6:610-619. [PMID: 31196794 PMCID: PMC6790975 DOI: 10.1016/s2215-0366(18)30474-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Catatonia is a psychomotor syndrome associated with several psychiatric and medical conditions. Psychomotor signs range from stupor to agitation, and include pathognomonic features such as verbigeration and waxy flexibility. Disturbances of volition led to the classification of catatonia as a subtype of schizophrenia, but changes in nosology now recognise the high prevalence in mood disorders, overlap with delirium, and comorbidity with medical conditions. Initial psychometric studies have revealed three behavioural factors, but the structure of catatonia is still unknown. Evidence from brain imaging studies of patients with psychotic disorders indicates increased neural activity in premotor areas in patients with hypokinetic catatonia. However, whether this localised hyperactivity is due to corticocortical inhibition or excess activity of inhibitory corticobasal ganglia loops is unclear. Current treatment of catatonia relies on benzodiazepines and electroconvulsive therapy-both effective, yet unspecific in their modes of action. Longitudinal research and treatment studies, with neuroimaging and brain stimulation techniques, are needed to advance our understanding of catatonia.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jo Ellen Wilson
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
30
|
Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 95:315-335. [PMID: 30236781 DOI: 10.1016/j.neubiorev.2018.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Although genuine motor abnormalities (GMA) are frequently found in schizophrenia, they are also considered as an intrinsic feature of bipolar, obsessive-compulsive, and neurodevelopmental disorders with early onset such as autism, ADHD, and Tourette syndrome. Such transnosological observations strongly suggest a common neural pathophysiology. This systematic review highlights the evidence on GMA and their neuroanatomical substrates in bipolar, obsessive-compulsive, and neurodevelopmental disorders. The data lends support for a common pattern contributing to GMA expression in these diseases that seems to be related to cerebello-thalamo-cortical, fronto-parietal, and cortico-subcortical motor circuit dysfunction. The identified studies provide first evidence for a motor network dysfunction as a correlate of early neurodevelopmental deviance prior to clinical symptom expression. There are also first hints for a developmental risk factor model of these mental disorders. An in-depth analysis of motor networks and related patho-(physiological) mechanisms will not only help promoting Research Domain Criteria (RDoC) Motor System construct, but also facilitate the development of novel psychopharmacological models, as well as the identification of neurobiologically plausible target sites for non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|