1
|
Yin JH, Horzmann KA. The influence of sex and age differences in an adult zebrafish (Danio rerio) T-maze model of cognition. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39638551 DOI: 10.1111/jfb.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The zebrafish (Danio rerio) model is increasingly popular in neurobehavioral research, and behavioral outcomes are commonly evaluated in studies on neurodegeneration and neurotoxicity. Sex and age have been identified as important variables in cognition studies; however, these factors are often underreported in published studies that use the zebrafish model, leading to uncertainty about their impact in zebrafish T-maze experiments. In this study, we evaluated the role of sex and age in zebrafish cognitive function using a 5-day T-maze task. Our results demonstrated that female and younger zebrafish had increased learning and memory capacity. These findings highlighted the importance of considering and reporting sex and age in experimental design in zebrafish cognitive neurobehavioral studies.
Collapse
Affiliation(s)
- Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Katharine A Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
2
|
Okanari K, Teranishi H, Umeda R, Shikano K, Inoue M, Hanada T, Ihara K, Hanada R. Behavioral and neurotransmitter changes on antiepileptic drugs treatment in the zebrafish pentylenetetrazol-induced seizure model. Behav Brain Res 2024; 464:114920. [PMID: 38403178 DOI: 10.1016/j.bbr.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Epilepsy, a recurrent neurological disorder involving abnormal neurotransmitter kinetics in the brain, has emerged as a global health concern. The mechanism of epileptic seizures is thought to involve a relative imbalance between excitatory and inhibitory neurotransmitters. Despite the recent advances in clinical and basic research on the pathogenesis of epilepsy, the complex relationship between the neurotransmitter changes and behavior with and without antiepileptic drugs (AEDs) during seizures remains unclear. To investigate the effects of AEDs such as levetiracetam (LEV), carbamazepine (CBZ), and fenfluramine (FFR) on key neurotransmitters in the pentylenetetrazol (PTZ)-induced seizures in adult zebrafish, we examined the changes in glutamic acid, gamma-aminobutyric acid (GABA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), choline, acetylcholine, norepinephrine, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and adenosine. In this study, we observed that 5-HT and DA levels in the brain increased immediately after PTZ-induced seizures. Behavioral tests clearly showed that all of these AEDs suppressed the PTZ-induced seizures. Upon treatment of PTZ-induced seizures with these AEDs, CBZ decreased the glutamic acid and FFR increased the GABA levels; however, no neurotransmitter changes were observed in the brain after LEV administration. Thus, we demonstrated a series of neurotransmitter changes linked to behavioral changes during PTZ-induced epileptic seizures when LEV, CBZ, or FFR were administered. These findings will lead to a more detailed understanding of the pathogenesis of epilepsy associated with behavioral and neurotransmitter changes under AED treatment.
Collapse
Affiliation(s)
- Kazuo Okanari
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Masanori Inoue
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan.
| |
Collapse
|
3
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. PHARMACEUTICAL BIOLOGY 2023; 61:100-110. [PMID: 36548216 PMCID: PMC9788714 DOI: 10.1080/13880209.2022.2157843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/04/2023]
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
Affiliation(s)
- Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- Department of Pharmacy, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi Hua
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Nan Xiao
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Meile Ma
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
6
|
Mohammadi E, Nikbakht F, Vazifekhah S, Babae JF, Jogataei MT. Evaluation the cognition-improvement effects of N-acetyl cysteine in experimental temporal lobe epilepsy in rat. Behav Brain Res 2023; 440:114263. [PMID: 36563904 DOI: 10.1016/j.bbr.2022.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Memory impairment is a critical issue in patients with temporal lobe epilepsy (TLE). Neuronal loss within the hippocampus and recurrent seizures may cause cognitive impairment in TLE. N -acetyl cysteine (NAC) is a sulfur-containing amino acid cysteine that is currently being investigated due to its protective effects on neurodegenerative disorders. NAC was orally administrated at a dose of 100 mg/kg for 8 days (7-day pretreatment and 1-day post-surgery). Neuronal viability, mTOR protein level, and spatial memory were detected in the kainite temporal epilepsy model via Nissl staining, western blot method, and Morris water maze task, respectively. Results showed that NAC delayed seizure activity and ameliorated memory deficit induced by Kainic acid. Histological analysis showed that NAC significantly increased the number of intact neurons in CA3 and hilar areas of the hippocampus following the induction of epilepsy. NAC also modulated the mTOR protein level 5 days after epilepsy compared to the KA-induced group. CONCLUSION: These results suggest that NAC improved memory impairment via anticonvulsant and neuroprotective activity and, in all probability, by lowering the level of mTOR.
Collapse
Affiliation(s)
- Ekram Mohammadi
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran.
| | - Somayeh Vazifekhah
- Department of Basic Sciences, Sari Branch. Islamic Azad University, Sari, Iran
| | - Javad Fahanik Babae
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Taghi Jogataei
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, University of Medical Sciences, Tehran Iran
| |
Collapse
|
7
|
Lee VLL, Norazit A, Noor SM, Shaikh MF. Channa Striatus Protects Against PTZ-Induced Seizures in LPS Pre-conditioned Zebrafish Model. Front Pharmacol 2022; 13:821618. [PMID: 35444543 PMCID: PMC9014177 DOI: 10.3389/fphar.2022.821618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent unprovoked seizures. Mounting evidence suggests the link between epileptogenesis and neuroinflammation. We hypothesize that eliminating neuroinflammation can alleviate seizure severity and prolong seizure onset. Channa striatus (CS) is a snakehead murrel commonly consumed by locals in Malaysia, believed to promote wound healing and mitigate inflammation. This study aims to unravel the anticonvulsive potential of CS extract on neuroinflammation-induced seizures using an adult zebrafish model. Neuroinflammation was induced via cerebroventricular microinjection of lipopolysaccharides from E. coli and later challenged with a second-hit pentylenetetrazol at a subconvulsive dose of 80 mg/kg. Zebrafish behaviour and swimming pattern analysis, as well as gene expression analysis, were done to study the pharmacological property of CS. CS extract pre-treatment in all doses significantly reduced seizure score, prolonged seizure onset time and slightly improved the locomotor swimming pattern of the zebrafish. CS extract pre-treatment at all doses significantly reduced the expression of NFKB gene in the brain, and CS extract at 25 mg/L significantly reduced the IL-1 gene expression suggesting anti-neuroinflammatory properties. However, there were no significant changes in the TNFα. Besides, CS extract at 50 mg/L also elevated the expression of the CREB gene, which exerts neuroprotective effects on the neurons and the NPY gene, which plays a role in modulating the inhibition of the excitatory neurotransmission. To sum up, CS extract demonstrated some anticonvulsive and anti-inflammatory activity on neuroinflammation-induced seizures. Still, more studies need to be done to elucidate the mechanism of action of CS extract.
Collapse
Affiliation(s)
- Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
8
|
Rai AR, Joy T, Rashmi KS, Rai R, Vinodini NA, Jiji PJ. Zebrafish as an experimental model for the simulation of neurological and craniofacial disorders. Vet World 2022; 15:22-29. [PMID: 35369579 PMCID: PMC8924399 DOI: 10.14202/vetworld.2022.22-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Zebrafish have gained momentum as a leading experimental model in recent years. At present, the zebrafish vertebrate model is increasingly used due to its multifactorial similarities to humans that include genetic, organ, and cellular factors. With the emergence of novel research techniques that are very expensive, it is necessary to develop affordable and valid experimental models. This review aimed to highlight some of the most important similarities between zebrafish and humans by emphasizing the relevance of the first in simulating neurological disorders and craniofacial deformity.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Coolidge, St. John's, Antigua
| | - K. S. Rashmi
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N. A. Vinodini
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P. J. Jiji
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Ren Q, Gao D, Mou L, Zhang S, Zhang M, Li N, Sik A, Jin M, Liu K. Anticonvulsant activity of melatonin and its success in ameliorating epileptic comorbidity-like symptoms in zebrafish. Eur J Pharmacol 2021; 912:174589. [PMID: 34699755 DOI: 10.1016/j.ejphar.2021.174589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
Epilepsy is one of common neurological disorders, greatly distresses the well-being of the sufferers. Melatonin has been used in clinical anti-epileptic studies, but its effect on epileptic comorbidities is unknown, and the underlying mechanism needs further investigation. Herein, by generating PTZ-induced zebrafish seizure model, we carried out interdisciplinary research using neurobehavioral assays, bioelectrical detection, molecular biology, and network pharmacology to investigate the activity of melatonin as well as its pharmacological mechanisms. We found melatonin suppressed seizure-like behavior by using zebrafish regular locomotor assays. Zebrafish freezing and bursting activity assays revealed the ameliorative effect of melatonin on comorbidity-like symptoms. The preliminary screening results of neurobehavioral assays were further verified by the expression of key genes involved in neuronal activity, neurodevelopment, depression and anxiety, as well as electrical signal recording from the midbrain of zebrafish. Subsequently, network pharmacology was introduced to identify potential targets of melatonin and its pathways. Real-time qPCR and protein-protein interaction (PPI) were conducted to confirm the underlying mechanisms associated with glutathione metabolism. We also found that melatonin receptors were involved in this process, which were regulated in response to melatonin exposure before PTZ treatment. The antagonists of melatonin receptors affected anticonvulsant activity of melatonin. Overall, current study revealed the considerable ameliorative effects of melatonin on seizure and epileptic comorbidity-like symptoms and unveiled the underlying mechanism. This study provides an animal model for the clinical application of melatonin in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Mengqi Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
10
|
Cho SJ, Park E, Baker A, Reid AY. Post-Traumatic Epilepsy in Zebrafish Is Drug-Resistant and Impairs Cognitive Function. J Neurotrauma 2021; 38:3174-3183. [PMID: 34409844 DOI: 10.1089/neu.2021.0156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Post-traumatic epilepsy (PTE) is acquired epilepsy after traumatic brain injury (TBI). Despite the availability of more than 20 antiseizure medications (ASMs), there is no way at present to prevent epileptogenesis in TBI survivors, and many cases of PTE become drug-resistant. Importantly, the adverse effects of ASMs can significantly affect patients' quality of life. Mammalian models are commonly used for studying refractory PTE, but are expensive and laborious. Zebrafish models have become popular for studying epilepsy, but most focus on larvae, and there have been no reports to date of pharmacological screening in an adult zebrafish model of acquired epilepsy. Valid animal models are critical for understanding PTE and for developing novel therapeutics. The aim of the present study was to characterize the cognitive impairments of a zebrafish model of TBI that leads to the development of PTE. Using combined behavioral and electrophysiological approaches, we also characterized the pharmacological effects of the most commonly used ASMs to manage PTE (valproate, carbamazepine, and phenytoin). Zebrafish with PTE exhibited impairments in learning and memory, difficulty in decision making, and reduced social preference. Valproate and carbamazepine had a limited protective effect against behavioral seizures, and all three drugs failed to significantly reduce electrographical seizures. The negative impacts of TBI and ASMs in zebrafish parallel those observed in other animals, making the zebrafish model of PTE a promising high-throughput model of refractory and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Sung-Joon Cho
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Collaborative Program in Neuroscience, Departments of University of Toronto, Toronto, Ontario, Canada.,Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eugene Park
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Baker
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Anesthesia and Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Aylin Y Reid
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Paudel YN, Khan SU, Othman I, Shaikh MF. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem Neurosci 2021; 12:3288-3302. [PMID: 34463468 DOI: 10.1021/acschemneuro.0c00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycyrrhizin (GL) is a well-known pharmacological inhibitor of high mobility group box 1 (HMGB1) and is abundantly present in the licorice root (Glycyrrhiza radix). HMGB1 protein, a key mediator of neuroinflammation, has been implicated in several neurological disorders, including epilepsy. Epilepsy is a devastating neurological disorder with no effective disease-modifying treatment strategies yet, suggesting a pressing need for exploring novel therapeutic options. In the current investigation, using a second hit pentylenetetrazol (PTZ) induced chronic seizure model in adult zebrafish, regulated mRNA expression of HMGB1 was inhibited by pretreatment with GL (25, 50, and 100 mg/kg, ip). A molecular docking study suggests that GL establishes different binding interactions with the various amino acid chains of HMGB1 and Toll-like receptor-4 (TLR4). Our finding suggests that GL pretreatment reduces/suppresses second hit PTZ induced seizure, as shown by the reduction in the seizure score. GL also regulates the second hit PTZ induced behavioral impairment and rescued second hit PTZ related memory impairment as demonstrated by an increase in the inflection ratio (IR) at the 3 h and 24 h T-maze trial. GL inhibited seizure-induced neuronal activity as demonstrated by reduced C-fos mRNA expression. GL also modulated mRNA expression of BDNF, CREB-1, and NPY. The possible mechanism underlying the anticonvulsive effect of GL could be attributed to its anti-inflammatory activity, as demonstrated by the downregulated mRNA expression level of HMGB1, TLR4, NF-kB, and TNF-α. Overall, our finding suggests that GL exerts an anticonvulsive effect and ameliorates seizure-related memory disruption plausibly through regulating of the HMGB1-TLR4-NF-kB axis.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
- Department of Pharmacy, Abasyn University, Ring Road, Peshawar 25120, Pakistan
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
12
|
Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Poleszak E, Wlaź P. Effects of new antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol 2021; 427:115655. [PMID: 34329640 DOI: 10.1016/j.taap.2021.115655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Several studies with larvae and adult zebrafish have shown that old and new antiseizure drugs (ASDs) produce discrepant results in seizure tests, locomotor activity or anxiety models. In this study, the pentylenetetrazole seizure test (PTZ) was performed to assess the effectiveness of four new ASDs: lamotrigine (LTG), topiramate (TPM), felbamate (FBM), and levetiracetam (LEV) in the subsequent stages of seizures in adult fish. All ASDs were administered intraperitoneally (i.p.). The time of maximal anticonvulsant effect and the dose-response relationship of the drugs were assessed. The effects of studied ASDs on the locomotor activity and the anxiety-like behavior in the color preference test were also investigated. Furthermore, drug concentrations in zebrafish homogenates were determined. LTG, TPM, and LEV significantly increased the seizure latency at three subsequent stages of seizures (SI-SIII), while FBM was effective only at SI. Locomotor activity decreased after TPM treatment. TPM and FBM exhibited a strong anxiolytic-like effect in the color preference test. LEV at the highest dose tested had a weak anxiolytic-like effect. The HPLC analysis showed average concentrations of the studied ASDs in the fish body during their maximum anticonvulsant activity. The present study shows that FBM cannot inhibit all subsequent PTZ seizure stages in the adult fish. Except for LTG, the studied drugs affected the anxiety-like behavior of treated animals. Furthermore, only TPM significantly changed locomotion parameters. Our findings support the need to accurately characterize the efficacy of new ASDs at different stages of the PTZ-induced seizures in adult zebrafish.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leszek Guz
- Department of Fish Diseases and Biology, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Akademicka 12, PL 20-033 Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
13
|
Benvenutti R, Marcon M, Gallas-Lopes M, de Mello AJ, Herrmann AP, Piato A. Swimming in the maze: An overview of maze apparatuses and protocols to assess zebrafish behavior. Neurosci Biobehav Rev 2021; 127:761-778. [PMID: 34087275 DOI: 10.1016/j.neubiorev.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 12/09/2022]
Abstract
Most preclinical behavioral assays use rodents as model animals, leaving room for species-specific biases that could be avoided by an expanded cross-species approach. In this context, zebrafish emerges as an alternative model organism to study neurobiological mechanisms of anxiety, preference, learning, and memory, as well as other phenotypes with relevance to neuropsychiatric disorders. In recent years, several zebrafish studies using different types of mazes have been published. However, the protocols and apparatuses' shapes and dimensions vary widely in the literature. This variation may puzzle researchers attempting to implement maze behavioral assays and challenges the reproducibility across institutions. This review aims to provide an overview of the behavioral paradigms assessed in different types of mazes in zebrafish reported in the last couple of decades. Also, this review aims to contribute to a better characterization of multi-behavioral assessment in zebrafish.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Marcon
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Anna Julie de Mello
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
14
|
Mante PK, Adomako NO, Antwi P, Kusi-Boadum NK, Osafo N. Solid-lipid nanoparticle formulation improves antiseizure action of cryptolepine. Biomed Pharmacother 2021; 137:111354. [DOI: 10.1016/j.biopha.2021.111354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
|
15
|
Paudel YN, Othman I, Shaikh MF. Anti-High Mobility Group Box-1 Monoclonal Antibody Attenuates Seizure-Induced Cognitive Decline by Suppressing Neuroinflammation in an Adult Zebrafish Model. Front Pharmacol 2021; 11:613009. [PMID: 33732146 PMCID: PMC7957017 DOI: 10.3389/fphar.2020.613009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a chronic brain disease afflicting around 70 million global population and is characterized by persisting predisposition to generate epileptic seizures. The precise understanding of the etiopathology of seizure generation is still elusive, however, brain inflammation is considered as a major contributor to epileptogenesis. HMGB1 protein being an initiator and crucial contributor of inflammation is known to contribute significantly to seizure generation via activating its principal receptors namely RAGE and TLR4 reflecting a potential therapeutic target. Herein, we evaluated an anti-seizure and memory ameliorating potential of an anti-HMGB1 monoclonal antibody (mAb) (1, 2.5 and 5 mg/kg, I.P.) in a second hit Pentylenetetrazol (PTZ) (80 mg/kg, I.P.) induced seizure model earlier stimulated with Pilocarpine (400 mg/kg, I.P.) in adult zebrafish. Pre-treatment with anti-HMGB1 mAb dose-dependently lowered the second hit PTZ-induced seizure but does not alter the disease progression. Moreover, anti-HMGB1 mAb also attenuated the second hit Pentylenetetrazol induced memory impairment in adult zebrafish as evidenced by an increased inflection ration at 3 and 24 h trail in T-maze test. Besides, decreased level of GABA and an upregulated Glutamate level was observed in the second hit PTZ induced group, which was modulated by pre-treatment with anti-HMGB1 mAb. Inflammatory responses occurred during the progression of seizures as evidenced by upregulated mRNA expression of HMGB1, TLR4, NF-κB, and TNF-α, in a second hit PTZ group, which was in-turn downregulated upon pre-treatment with anti-HMGB1 mAb reflecting its anti-inflammatory potential. Anti-HMGB1 mAb modulates second hit PTZ induced changes in mRNA expression of CREB-1 and NPY. Our findings indicates anti-HMGB1 mAb attenuates second hit PTZ-induced seizures, ameliorates related memory impairment, and downregulates the seizure induced upregulation of inflammatory markers to possibly protect the zebrafish from the incidence of further seizures through via modulation of neuroinflammatory pathway.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Liquid Chromatography-Mass Spectrometry Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
16
|
Mishra P, Mittal AK, Rajput SK, Sinha JK. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113509. [PMID: 33141053 DOI: 10.1016/j.jep.2020.113509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Processed Nux vomica seed extracts and homeopathic medicinal preparations (HMPs) are widely used in traditional Indian and Chinese medicine for respiratory, digestive, neurological and behavioral disorders. Antioxidant property of Nux vomica is well known and recent investigation has highlighted the anticonvulsant potential of its homeopathic formulation. AIM OF THE STUDY To explore the anticonvulsant and antiepileptogenic potential of Nux vomica HMPs (6CH, 12CH and 30CH potency) in pentylenetetrazole (PTZ) induced acute and chronic experimental seizure models in mice and investigate their effects on cognition, memory, motor activity and oxidative stress markers in kindled animals. MATERIALS AND METHODS Acute seizures were induced in the animals through 70 mg/kg (i.p.) administration of PTZ followed by the evaluation of latency and duration of Generalized tonic-clonic seizures (GTCS). Subconvulsive PTZ doses (35 mg/kg, i.p.) induced kindling in 29 days, which was followed by assessment of cognition, memory and motor impairment through validated behavioral techniques. The status of oxidative stress was estimated through measurement of MDA, GSH and SOD. RESULTS HMPs delayed the latency and reduced the duration of GTCS in acute model signifying possible regulation of GABAergic neurotransmission. Kindling was significantly hindered by the HMPs that justified the ameliorated cognition, memory and motor activity impairment. The HMPs attenuated lipid peroxidation by reducing MDA level and strengthened the antioxidant mechanism by enhancing the GSH and SOD levels in the kindled animals. CONCLUSIONS Nux vomica HMPs showed anticonvulsant and antiepileptogenic potency in acute and chronic models of epilepsy. The test drugs attenuated behavioral impairment and reduced the oxidative stress against PTZ induced kindling owing to which they can be further explored for their cellular and molecular mechanism(s).
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Amit Kumar Mittal
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Satyendra Kumar Rajput
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India; Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
17
|
Mishra P, Sinha JK, Rajput SK. Efficacy of Cicuta virosa medicinal preparations against pentylenetetrazole-induced seizures. Epilepsy Behav 2021; 115:107653. [PMID: 33358679 DOI: 10.1016/j.yebeh.2020.107653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Epileptic seizures are characterized by imbalanced inhibition-excitation cycle that triggers biochemical alterations responsible for jeopardized neuronal integrity. Conventional antiepileptic drugs (AEDs) have been the mainstay option for treatment and control; however, symptomatic control and potential to exacerbate the seizure condition calls for viable alternative to these chemical agents. In this context, natural product-based therapies have accrued great interest in recent years due to competent disease management potential and lower associated adversities. Cicuta virosa (CV) is one such herbal remedy that is used in traditional system of medicine against myriad of disorders including epilepsy. Homeopathic medicinal preparations (HMPs) of CV were assessed for their efficacy in pentylenetetrazole (PTZ)-induced acute and kindling models of epilepsy. CV HMPs increased the latency and reduced the duration of tonic-clonic phase in acute model while lowering the kindling score in the kindling model that signified their role in modulating GABAergic neurotransmission and potassium conductance. Kindling-induced impairment of cognition, memory, and motor coordination was ameliorated by the CV HMPs that substantiated their efficacy in imparting sustained neuronal fortification. Furthermore, biochemical evaluation showed attenuated oxidative stress load through reduced lipid peroxidation and strengthened free radical scavenging mechanism. Taken together, CV HMPs exhibited promising results in acute and kindling models and must be further assessed through molecular and epigenomic studies.
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Uttar Pradesh, Noida 201303, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Uttar Pradesh, Noida 201303, India.
| | - Satyendra Kumar Rajput
- Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| |
Collapse
|
18
|
Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Poleszak E, Wlaź P. Effects of classic antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol 2021; 415:115429. [PMID: 33524447 DOI: 10.1016/j.taap.2021.115429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The zebrafish is extensively used as a model organism for studying several disorders of the central nervous system (CNS), including epilepsy. Some antiseizure drugs (ASDs) have been shown to produce discrepant results in larvae and adults zebrafish, therefore, their anticonvulsant efficacy in subsequent stages of the pentylenetetrazole (PTZ)-induced seizures should be more precisely characterized. The purpose of this study was to investigate behavioral effects of five classic ASDs: valproate (VPA), phenytoin (PHT), carbamazepine (CBZ), diazepam (DZP), and phenobarbital (PB) administered intraperitoneally (i.p.) in the PTZ-induced seizure test in adult zebrafish. We determined the time of maximal effect and the dose-response relationship of the studied ASDs. Furthermore, we assessed changes in the locomotor activity and the anxiety-like behavior in the color preference test. Moreover, drug concentrations in zebrafish homogenates were examined. VPA, DZP, and PB significantly increased the seizure latency at three subsequent stages of seizures (SI-SIII). PHT produced the anticonvulsant-like effect at SI and SII, while CBZ was effective at SII and SIII. Only DZP decreased zebrafish locomotor activity. A strong anxiolytic-like effect was observed after administration of PHT and PB. A weak anxiolytic-like effect occurred after treatment with VPA and DZP. The HPLC analysis showed the average concentrations of the studied ASDs in the fish body during the maximum anticonvulsant activity of each drug. Our results confirm the advantages of using zebrafish with the mature CNS over larval models and its utility to investigate some neuropharmacological properties of the tested drugs.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leszek Guz
- Department of Fish Diseases and Biology, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Akademicka 12, PL 20-033 Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
19
|
Wang Y, Wang G, Tao J, Li X, Hu L, Li Q, Lu J, Li Y, Li Z. Autophagy associated with the efficacy of valproic acid in PTZ-induced epileptic rats. Brain Res 2020; 1745:146923. [PMID: 32504548 DOI: 10.1016/j.brainres.2020.146923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drugs. Patients who are non-responsive to VPA often present to the clinic; however, the mechanism of resistance is unclear. In this study, we found that responder and non-responder pentylenetetrazole-induced chronic epileptic rats had no significant differences in VPA concentrations in their plasma and brain tissues. Furthermore, through an RNA-sequence method, we identified 334 differentially expressed genes between VPA-responsive and non-responsive rats, while 21 pathways were enriched. Interestingly, 16 pathways, including the phagosome pathway, were commonly enriched compared to those in patients. We used transmission electron microscopy and immunofluorescence microscopy to further assess the level of autophagy in responder and non-responder rats. Non-responders had more autophagic vacuoles and an increased level of LC3B expression. Furthermore, epileptic rats that were previously administered 3-methyadenine (an inhibitor of autophagy) exhibited a slight increase in VPA efficacy. In conclusion, autophagy was associated with the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China; Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Guangfei Wang
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jie Tao
- Central Laboratory, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China
| | - Qin Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jinmiao Lu
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China.
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
20
|
Cho SJ, Park E, Baker A, Reid AY. Age Bias in Zebrafish Models of Epilepsy: What Can We Learn From Old Fish? Front Cell Dev Biol 2020; 8:573303. [PMID: 33015065 PMCID: PMC7511771 DOI: 10.3389/fcell.2020.573303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish are a powerful tool for investigating epilepsy. Mammalian seizures can be recapitulated molecularly, behaviorally, and electrophysiologically, using a fraction of the resources required for experiments in mammals. Larval zebrafish offer exceptionally economical and high-throughput approaches and are amenable to state-of-the-art genetic engineering techniques, providing valuable transgenic models of human diseases. For these reasons, larvae tend to be chosen for studying epilepsy, but the value of adult zebrafish may be underappreciated. Zebrafish exhibit transient larval - adult duality. The incompletely developed neural system of larval zebrafish may limit the translation of complex neurological disorders. Larval zebrafish go through dynamic changes during ontogenesis, whereas adult zebrafish are physiologically more stable. Adult zebrafish have a full range of complex brain structures and functions, such as an endothelial blood-brain barrier and adult neurogenesis, both are significant factors in epilepsy research. This review highlights the differences between larval and adult zebrafish that should be considered in pathophysiological and pharmacological studies of epilepsy.
Collapse
Affiliation(s)
- Sung-Joon Cho
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
- Keenan Research Center, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Eugene Park
- Keenan Research Center, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Andrew Baker
- Keenan Research Center, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Department of Anesthesia and Surgery, University of Toronto, Toronto, ON, Canada
| | - Aylin Y. Reid
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Silkis IG. Role of Acetylcholine and GABAergic Inhibitory Transmission in Seizure Pattern Generation in Neural Networks Integrating the Neocortex, Hippocampus, Basal Ganglia, and Thalamus. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gawel K, Kukula-Koch W, Nieoczym D, Stepnik K, van der Ent W, Banono NS, Tarabasz D, Turski WA, Esguerra CV. The Influence of Palmatine Isolated from Berberis sibirica Radix on Pentylenetetrazole-Induced Seizures in Zebrafish. Cells 2020; 9:cells9051233. [PMID: 32429356 PMCID: PMC7290958 DOI: 10.3390/cells9051233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Palmatine (PALM) and berberine (BERB) are widely identified isoquinoline alkaloids among the representatives of the Berberidaceae botanical family. The antiseizure activity of BERB was shown previously in experimental epilepsy models. We assessed the effect of PALM in a pentylenetetrazole (PTZ)-induced seizure assay in zebrafish, with BERB as an active reference compound. Both alkaloids were isolated from the methanolic root extract of Berberis sibirica by counter-current chromatography, and their ability to cross the blood–brain barrier was determined via quantitative structure–activity relationship assay. PALM exerted antiseizure activity, as confirmed by electroencephalographic analysis, and decreased c-fos and bdnf levels in PTZ-treated larvae. In a behavioral assay, PALM dose-dependently decreased PTZ-induced hyperlocomotion. The combination of PALM and BERB in ED16 doses revealed hyperadditive activity towards PTZ-induced hyperlocomotion. Notably, we have indicated that both alkaloids may exert their anticonvulsant activity through different mechanisms of action. Additionally, the combination of both alkaloids in a 1:2.17 ratio (PALM: BERB) mimicked the activity of the pure extract, which indicates that these two active compounds are responsible for its anticonvulsive activity. In conclusion, our study reveals for the first time the anticonvulsant activity of PALM and suggests the combination of PALM and BERB may have higher therapeutic value than separate usage of these compounds.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6454
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland;
| | - Katarzyna Stepnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/243, 20-031 Lublin, Poland;
| | - Wietske van der Ent
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Dominik Tarabasz
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| |
Collapse
|
23
|
Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF. Pilocarpine Induced Behavioral and Biochemical Alterations in Chronic Seizure-Like Condition in Adult Zebrafish. Int J Mol Sci 2020; 21:ijms21072492. [PMID: 32260203 PMCID: PMC7178024 DOI: 10.3390/ijms21072492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
| | - Yatinesh Kumari
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
| | - Syafiq Asnawi Zainal Abidin
- LC-MS/MS Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
- LC-MS/MS Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
- Correspondence: ; Tel.: +603 5514 4483
| |
Collapse
|
24
|
Li J, Copmans D, Partoens M, Hunyadi B, Luyten W, de Witte P. Zebrafish-Based Screening of Antiseizure Plants Used in Traditional Chinese Medicine: Magnolia officinalis Extract and Its Constituents Magnolol and Honokiol Exhibit Potent Anticonvulsant Activity in a Therapy-Resistant Epilepsy Model. ACS Chem Neurosci 2020; 11:730-742. [PMID: 32083464 DOI: 10.1021/acschemneuro.9b00610] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
With the aim to discover interesting lead compounds that could be further developed into compounds active against pharmacoresistant epilepsies, we first collected 14 medicinal plants used in traditional Chinese medicine (TCM) against epilepsy. Of the six extracts that tested positive in a pentylenetetrazole (PTZ) behavioral zebrafish model, only the ethanol and acetone extracts from Magnolia officinalis (M. officinalis) also showed effective antiseizure activity in the ethylketopentenoate (EKP) zebrafish model. The EKP model is regarded as an interesting discovery platform to find mechanistically novel antiseizure drugs, as it responds poorly to a large number of marketed anti-epileptics. We then demonstrated that magnolol and honokiol, two major constituents of M. officinalis, displayed an effective behavioral and electrophysiological antiseizure activity in both the PTZ and the EKP models. Out of six structural analogues tested, only 4-O-methylhonokiol was active and to a lesser extent tetrahydromagnolol, whereas the other analogues (3,3'-dimethylbiphenyl, 2,2'-biphenol, 2-phenylphenol, and 3,3',5,5'-tetra-tert-butyl-[1,1'-biphenyl]-2,2'-diol) were not consistently active in the aforementioned assays. Finally, magnolol was also active in the 6 Hz psychomotor mouse model, an acute therapy-resistant rodent model, thereby confirming the translation of the findings from zebrafish larvae to mice in the field of epilepsy. We also developed a fast and automated power spectral density (PSD) analysis of local field potential (LFP) recordings. The PSD results are in agreement with the visual analysis of LFP recordings using Clampfit software and manually counting the epileptiform events. Taken together, screening extracts of single plants employed in TCM, using a combination of zebrafish- and mouse-based assays, allowed us to identify allyl biphenol as a chemical scaffold for the future development of compounds with potential activity against therapy-resistant epilepsies.
Collapse
Affiliation(s)
- Jing Li
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Michèle Partoens
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Borbála Hunyadi
- STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Nabinger DD, Altenhofen S, Bonan CD. Zebrafish models: Gaining insight into purinergic signaling and neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109770. [PMID: 31678483 DOI: 10.1016/j.pnpbp.2019.109770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
Abstract
Zebrafish (Danio rerio) has been considered a complementary model for biomedical studies, especially due to advantages such as external and rapid development, and genetic manipulation. There is growing interest in this model in neuroscience research since the species has morphological and physiological similarities to mammals and a complex behavioral repertoire. The purinergic signaling has been described in zebrafish, and purinoceptors and nucleotide- and nucleoside-metabolizing enzymes have already been identified in the central nervous system (CNS) of this species. The involvement of the purinergic system in several models of neurological disorders, such as Alzheimers disease, Parkinson's disease, epilepsy, schizophrenia, and autism has been investigated in zebrafish. This mini review presents several studies describing purinergic signaling in the zebrafish CNS and the action of this neurotransmitter system in models of neurological disorders using this species as a biological model. The use of pharmacological approaches at different stages of development may be a useful tool for preclinical assays and the testing of purinergic compounds as new alternatives for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Canzian J, Müller TE, Franscescon F, Michelotti P, Fontana BD, Costa FV, Rosemberg DB. Modeling psychiatric comorbid symptoms of epileptic seizures in zebrafish. J Psychiatr Res 2019; 119:14-22. [PMID: 31542703 DOI: 10.1016/j.jpsychires.2019.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/31/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy is a debilitating neurological disorder characterized by recurrent unprovoked seizures. Anxiety, cognitive deficits, depressive-like symptoms, and social dysfunction are psychiatric comorbidities with high prevalence in epileptic patients. Due to the genetic and behavioral tractability, the zebrafish is a promising model organism to understand the neural bases involved in epilepsy-related comorbidities. Here, we aimed to characterize some behavioral phenotypes paralleling those observed in epilepsy-related comorbidities after a single pentylenetetrazole (PTZ) exposure in zebrafish. We also analyzed the influence of whole-body cortisol levels in the behavioral responses measured. Fish were exposed to 10 mM PTZ for 20 min to induce epileptic seizures. After 24 h recovery period, locomotion and anxiety-like responses (novel tank and light-dark tests), social interaction (shoaling behavior task), and memory retention (inhibitory avoidance protocol) were assessed. Basically, PTZ impaired habituation to novelty stress, evoked anxiogenic-like behaviors, disrupted shoaling, and caused memory consolidation deficits in zebrafish without changing whole-body cortisol levels. In conclusion, our novel findings further validate the use of zebrafish as a suitable tool for modeling epilepsy-related comorbidities in translational neuropsychiatric research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Paula Michelotti
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|