1
|
Rogalewicz B, Czylkowska A. Recent advances in the discovery of copper(II) complexes as potential anticancer drugs. Eur J Med Chem 2025; 292:117702. [PMID: 40328033 DOI: 10.1016/j.ejmech.2025.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/13/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
This review article offers a literature search of the most active, new copper (II) anticancer complexes based on nitrogen-containing ligands, reported in the literature over the past 5 years: from the beginning of 2019, until mid-2024. In the modern world, cancer remains one of the deadliest diseases of all. Although years of the ongoing research allowed us to better understand its nature, and thus aim more precisely at specific molecular targets and pathways, many of its aspects remain unclear. Today, chemotherapy still remains at the forefront of cancer treatment. With the ever-growing struggles to overcome chemoresistance and occurrence of serious side effects, the discovery of new, more selective and active drugs is a task of an utmost importance. At the same time, copper (II)-based compounds offer a wide array of biological activities and valuable biochemical properties. This review article provides the update on the recent advances in the discovery of new potential anticancer drugs among copper (II)-based compounds in the recent five years.
Collapse
Affiliation(s)
- Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
2
|
Abstract
Topochemical reactions are solid-state reactions that transpire under the strict control of molecular packing in the crystal lattice. Due to this lattice control, these reactions generate products in a regio-/stereospecific manner and in very high yields. In a broader sense, topochemical reactions mimic nature's way of carrying out reactions in a confined environment of enzymes giving specific products. Apart from their remarkable specificity, topochemical reactions have many other interesting features that make these reactions more attractive than solution-phase reactions. Solution-phase reactions necessitate the use of reactants, reagents, catalysts, and solvents and often give products along with varying amounts of byproducts, necessitating complex workup and chromatographic purification using various chemicals. These inevitable chemical wastes from solution-state reactions could be avoided by topochemical reactions, as they are solvent-free and catalyst-free and often do not require any chromatographic purification in view of their specificity and high yielding nature. Also the confinement offered by the crystal lattice gives products that are not possible by solution-phase reactions. Another interesting feature of topochemical reactions is the possibility of formation of products in an ordered (crystalline) form, which imparts interesting properties. Thus, topochemical reactions have control not only at the molecular level (regio-/stereospecificity) but also at the supramolecular level (packing). Many topochemical reactions happen in single-crystal-to-single-crystal (SCSC) fashion, and crystal structure analysis of such reactions often gives mechanistic insights and knowledge about the geometrical criteria required for the reaction. Despite all these attractive features, reactions that can be done topochemically are limited. There is tremendous interest in the development of new categories of topochemical reactions and strategies to achieve reactivity in crystals. In this Account, we will summarize our attempts to develop topochemical azide-alkyne cycloaddition (TAAC) reactions. We have used hydrogen-bonding as the main noncovalent interaction for aligning azide-and-alkyne-substituted derivatives of various biomolecules in orientations suitable for their proximity-driven cycloaddition reaction in crystals. Overall, three major classes of biomolecules; carbohydrates, nucleosides, and peptides were successfully exploited for their TAAC reactions using conventional O-H···O, N-H···O, and N-H···N hydrogen bonds as supramolecular glues for controlling their assembly in crystals. The crystals of these monomers underwent TAAC reaction either spontaneously at room temperature or under heating yielding triazole-linked biopolymer mimics. The ordered packing of product molecules imparted special properties to the products formed. The legendary "cream of the crop" azide-alkyne click reaction has diverse applications in the areas of bioconjugation, material science, polymer synthesis, and so forth. Belonging to the same genre, TAAC is a novel metal-free approach for making the triazole-linked products employing the ordered crystal/gel as a reaction medium. In brief, our studies suggest that TAAC reaction can be implemented in diverse molecular categories and has high potential to develop into a field with practical applications.
Collapse
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India
| | - Kana M. Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India
| |
Collapse
|
3
|
Glavaš-Obrovac L, Jukić M, Mišković K, Marković I, Saftić D, Ban Ž, Matić J, Žinić B. Antiproliferative and proapoptotic activity of molecular copper(II) complex of N-1-tosylcytosine. J Trace Elem Med Biol 2019; 55:216-222. [PMID: 29066001 DOI: 10.1016/j.jtemb.2017.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/25/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
Abstract
In an attempt to enhance the previously observed antiproliferative capacity of 1-(p-toluenesulfonyl)cytosine (N-1-tosylcytosine, ligand 1), its copper(II) complex (Cu(1-TsC-N3)2Cl2, complex 2) was prepared and tested in vitro on various carcinoma and leukemia cells. The comparative in vitro studies using the ligand 1, the complex 2, CuCl2x2H2O salt (salt 3) and the 1:2 mixture of the salt 3 and ligand 1 (mixture 4) were performed on normal (WI38), human carcinoma (HeLa, CaCo2, MiaPaCa2, SW620), lymphoma (Raji) and leukemia (K562) cell lines. Significantly elevated concentration of the intracellular copper after treatment of K562 cells and HeLa cells during 2h with complex 2 (7.83 vs. 5.4 times) was detected by atomic absorption spectroscopy. Cytotoxicity was analyzed by MTT assay. We found that antiproliferative capacity of the tested compounds varies (IC50 after 72h of exposure: 0.6×10-6M to>100×10-6M). Leukemia and lymphoma cells were found the most sensitive to complex 2 which showed more than 100 times higher in vitro activity against K562 cells than ligand 1. Apoptotic morphological changes, an externalization of phosphatydilserine, and changes in the mitochondrial membrane potential of treated cells were found. The caspase-3 activity in HeLa and K562 cells was measured by caspase-3 colorimetric assay kit. Caspase-3 was not activated in the treated K562 cells while salt 3 and the mixture 4 in the HeLa cells significantly increased tested enzyme activity. These findings suggest that copper(II) in the molecular complex 2 by improving entry of the N-1-tosylcytosine 1 into cells increases its antiproliferative capacity. In summary, the present study demonstrated that complex 2 possesses an antileukemic effect on K562 cells, and its anticancer activity was attributed with induction of apoptosis. The exact mechanism of apoptosis induction by complex 2 must be further investigated.
Collapse
Affiliation(s)
- Ljubica Glavaš-Obrovac
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, HR-31000 Osijek, Croatia.
| | - Marijana Jukić
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, HR-31000 Osijek, Croatia.
| | - Katarina Mišković
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, HR-31000 Osijek, Croatia.
| | - Ivana Marković
- Department of Clinical Laboratory Diagnostics, Clinical Hospital Centre Osijek, Huttlerova 4, HR-31000 Osijek, Croatia.
| | - Dijana Saftić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Željka Ban
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Biserka Žinić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
4
|
Kobetić R, Ključarić V, Saftić D, Matić J, Ban Ž, Kazazić S, Žinić B. The transformation from 2°-amine to 3°-amine of cyclam ring alters the fragmentation patterns of 1-tosylcytosine-cyclam conjugates. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:655-664. [PMID: 29739033 DOI: 10.1002/jms.4197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The novel N-1-sulfonylcytosine-cyclam conjugates 1 and 2 conjugates are ionized by electrospray ionization mass spectrometry (ESI MS) in positive and negative modes (ES+ and ES- ) as singly protonated/deprotonated species or as singly or doubly charged metal complexes. Their structure and fragmentation behavior is examined by collision induced experiments. It was observed that the structure of the conjugate dictated the mode of the ionization: 1 was analyzed in ES- mode while 2 in positive mode. Complexation with metal ions did not have the influence on the ionization mode. Zn2+ and Cu2+ complexes with ligand 1 followed the similar fragmentation pattern in negative ionization mode. The transformation from 2°-amine in 1 to 3°-amine of cyclam ring in 2 leads to the different fragmentation patterns due to the modification of the protonation priority which changed the fragmentation channels within the conjugate itself. Cu2+ ions formed complexes practically immediately, and the priority had the cyclam portion of the ligand 2. The structure of the formed Zn2+ complexes with ligand 2 depended on the number of 3° amines within the cyclam portion of the conjugate and the ratio of the metal:ligand used. The cleavage of the cyclam ring of metal complexes is driven by the formation of the fragment that suited the coordinating demand of the metal ions and the collision energy applied. Finally, it was shown that the structure of the cyclam conjugate dictates the fragmentation reactions and not the metal ions.
Collapse
Affiliation(s)
- Renata Kobetić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Valentina Ključarić
- Ministry of Defense of the Republic of Croatia, Dr. Franjo Tuđman Croatian Defense Academy, Ilica 256 b, Zagreb, Croatia
| | - Dijana Saftić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Željka Ban
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Snježana Kazazić
- Laboratory for Mass Spectrometry, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Biserka Žinić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| |
Collapse
|
5
|
Ključarić V, Kobetić R, Rinkovec J, Kazazić S, Gembarovski D, Saftić D, Matić J, Ban Ž, Žinić B. ESI-MS studies of the non-covalent interactions between biologically important metal ions and N-sulfonylcytosine derivatives. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:998-1005. [PMID: 27405069 DOI: 10.1002/jms.3810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/16/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
The aim of this report is to present the electrospray ionization mass spectrometry results of the non-covalent interaction of two biologically active ligands, N-1-(p-toluenesulfonyl)cytosine, 1-TsC, 1 and N-1-methanesulfonylcytosine, 1-MsC, 2 and their Cu(II) complexes Cu(1-TsC-N3)2 Cl2 , 3 and Cu(1-MsC-N3)2 Cl2 and 4 with biologically important cations: Na+ , K+ , Ca2+ , Mg2+ and Zn2+ . The formation of various complex metal ions was observed. The alkali metals Na+ and K+ formed clusters because of electrostatic interactions. Ca2+ and Mg2+ salts produced the tris ligand and mixed ligand complexes. The interaction of Zn2+ with 1-4 produced monometal and dimetal Zn2+ complexes as a result of the affinity of Zn2+ ions toward both O and N atoms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Valentina Ključarić
- Ministry of Defense of the Republic of Croatia, "Dr. Franjo Tuđman" Croatian Defense Academy, Ilica 256 b, Zagreb, Croatia
| | - Renata Kobetić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia.
| | - Jasmina Rinkovec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia
| | - Snježana Kazazić
- Laboratory for Chemical Kinetics and Atmospheric Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | | | - Dijana Saftić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Željka Ban
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Biserka Žinić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
6
|
Patil YP, Nethaji M. Simultaneous co-ordination of three cytosine ligands displaying different binding sites around the copper centres. RSC Adv 2014. [DOI: 10.1039/c4ra07828d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reaction of copper with 1,10-phenanthroline and cytosine forms a novel polymeric structure with two different cytosine binding modes coordinated to copper centers. Also the polymeric complex has mixed coordination geometry around the metal centers.
Collapse
Affiliation(s)
- Yogesh Prakash Patil
- Inorganic and Physical Chemistry Department
- Indian Institute of Science
- Bangalore 560012, India
| | - Munirathinam Nethaji
- Inorganic and Physical Chemistry Department
- Indian Institute of Science
- Bangalore 560012, India
| |
Collapse
|
7
|
Carballo R, Castiñeiras A, Domínguez-Martín A, García-Santos I, Niclós-Gutiérrez J. Solid state structures of cadmium complexes with relevance for biological systems. Met Ions Life Sci 2013; 11:145-89. [PMID: 23430774 DOI: 10.1007/978-94-007-5179-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This chapter provides a review of the literature on structural information from crystal structures determined by X-ray diffractometry of cadmium(II) complexes containing ligands of potential biological interest. These ligands fall into three broad classes, (i) those containing N-donors such as purine or pyrimidine bases and derivatives of adenine, guanine or cytosine, (ii) those containing carboxylate groups such as α-amino acids, in particular the twenty essential ones, the water soluble vitamins (B-complex) or the polycarboxylates of EDTA type ligands, and (iii) S-donors such as thiols/thiolates or dithiocarbamates. A crystal and molecular structural analysis has been carried out for some representative complexes of these ligands, specifically addressing the coordination mode of ligands, the coordination environment of cadmium and, in some significant cases, the intermolecular interactions.
Collapse
Affiliation(s)
- Rosa Carballo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Vigo, Vigo, Spain
| | | | | | | | | |
Collapse
|
8
|
Garbelini ER, Martin MDGM, Back DF, Evans DJ, Müller-Santos M, Ribeiro RR, Lang ES, Nunes FS. Synthesis, characterization and chemical properties of 1-((E)-2-pyridinylmethylidene)semicarbazone manganese(II) and iron(II) complexes. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2011.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|