1
|
Zhivkova T, Culita DC, Abudalleh A, Dyakova L, Mocanu T, Madalan AM, Georgieva M, Miloshev G, Hanganu A, Marinescu G, Alexandrova R. Homo- and heterometallic complexes of Zn(II), {Zn(II)Au(I)}, and {Zn(II)Ag(I)} with pentadentate Schiff base ligands as promising anticancer agents. Dalton Trans 2023; 52:12282-12295. [PMID: 37574873 DOI: 10.1039/d3dt01749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Two families of homo- and heterometallic complexes, [Zn2L1(μ-OH)(H2O)2](ClO4)2, [Zn2L2(μ-OH)(H2O)2](ClO4)2, [Zn2L3(μ-OH)(H2O)2](ClO4)2, 1∞[{L1Zn2(μ-OH)}{μ-[Ag(CN)2]}](ClO4), [{L1Zn2(μ-OH)}2{μ-[Au(CN)2]}{[Au(CN)2]2}](ClO4)·H2O, 1∞[{L2Zn2(μ3-OH)}2(H2O){μ-[Ag(CN)2]}](ClO4)3·THF·0.5MeOH, 1∞[{L2Zn2(μ3-OH)}2(H2O){μ-[Au(CN)2]}](ClO4)3·THF·H2O, and 1∞[{L3Zn2(μ-OH)}{μ-[Ag(CN)2]}][Ag(CN)2]·H2O, respectively, have been synthesized and characterized. The Schiff bases used as ligands were obtained by condensation reactions of 2,6-diformyl-p-cresol with N,N-dimethyl-ethylenediamine (HL1), 2-aminomethyl-pyridine (HL2), and 2-aminoethyl-pyridine (HL3), respectively. The cytotoxic/cytostatic and genotoxic effects in cultured human MCF-7 (luminal type A breast cancer), MDA-MB-231 (triple negative breast cancer), HeLa (cervical carcinoma), and Lep-3 (non-tumor embryonal fibroblastoid cells) were studied. The investigations were performed by thiazolyl blue tetrazolium bromide test (MTT test), neutral red uptake cytotoxicity assay, crystal violet staining, hematoxylin and eosin staining, double staining with acridine orange and propidium iodide, AnnexinV/FITC, and Comet assay in short-term experiments (24-72 h, with monolayer cell cultures) as well as by 3D colony-forming method in long-term experiments (28 days, with 3D cancer cell colonies). The results obtained revealed that: (i) applied at a concentration range of 0.1-100 μg mL-1, the compounds investigated decrease in a time- and concentration-dependent manner the viability and/or proliferation of the treated cells; (ii) complexes of {Zn(II)Au(I)} show relatively higher cytotoxic/genotoxic activity and antitumor potential as compared to {Zn(II)Ag(I)}; (iii) some of the complexes demonstrate more pronounced cytotoxic potential than commercially available antitumor agents cisplatin, oxaliplatin, and epirubicin.
Collapse
Affiliation(s)
- Tania Zhivkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| | - Daniela C Culita
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Abedulkadir Abudalleh
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| | - Lora Dyakova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 23, Sofia 1113, Bulgaria
| | - Teodora Mocanu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Augustin M Madalan
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
| | - Milena Georgieva
- Institute of Molecular Biology "Roumen Tsanev", Acad. Georgi Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - George Miloshev
- Institute of Molecular Biology "Roumen Tsanev", Acad. Georgi Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Anamaria Hanganu
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
- "C.D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, Splaiul Independentei 202B, Bucharest, Romania
| | - Gabriela Marinescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| |
Collapse
|
2
|
Hou W, Dai W, Huang H, Liu SL, Liu J, Huang LJ, Huang XH, Zeng JL, Gan ZW, Zhang ZY, Lan JX. Pharmacological activity and mechanism of pyrazines. Eur J Med Chem 2023; 258:115544. [PMID: 37300915 DOI: 10.1016/j.ejmech.2023.115544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Heterocycles are common in the structure of drugs used clinically to deal with diseases. Such drugs usually contain nitrogen, oxygen and sulfur, which possess electron-accepting capacity and can form hydrogen bonds. These properties often bring enhanced target binding ability to these compounds when compared to alkanes. Pyrazine is a nitrogen-containing six-membered heterocyclic ring and many of its derivatives are identified as bioactive molecules. We review here the most active pyrazine compounds in terms of their structure, activity in vitro and in vivo (mainly antitumor activity) and the reported mechanisms of action. References have been downloaded through Web of Science, PubMed, Science Direct, Google Scholar and SciFinder Scholar. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. We found that compounds in which a pyrazine ring was fused into other heterocycles especially pyrrole or imidazole were the highly studied pyrazine derivatives, whose antineoplastic activity had been widely investigated. To the best of our knowledge, this is the first review of pyrazine derivatives and their bioactivity, especially their antitumor activity. This review should be useful for those engaged in development of medications based on heterocyclic compounds especially those based on pyrazine.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Sheng-Lan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jun Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xian-Hua Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jun-Lin Zeng
- HuanKui Academy, Nanchang University, Nanchang, 330006, PR China
| | - Zhi-Wei Gan
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
3
|
Bharathi S, Mahendiran D, Ahmed S, Rahiman AK. In vitro anti-proliferative, and in silico ribonucleotide reductase and pharmacokinetics studies of heteroleptic silver(I), nickel(II) and copper(II) complexes of 4-methyl-3-thiosemicarbazones and ibuprofen. J Trace Elem Med Biol 2023; 79:127211. [PMID: 37263062 DOI: 10.1016/j.jtemb.2023.127211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/10/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The present research focuses on the in vitro anti-proliferative, and in silico ribonucleotide reductase and pharmacokinetics studies of twelve heteroleptic metal complexes of the general formulae [Ag(L1-4)(ibu)] (1-4) and [M(L1-4)(ibu)2] (5-12), where L1-4 = 2-(1-(4-substitutedphenyl)ethylidene)-N-methylhydrazinecarbothioamide, ibu = non-steroidal anti-inflammatory drug (ibuprofen), and M = Cu(II) and Ni(II). METHODS Various spectroscopic techniques were used to authenticate the structure of the synthesized complexes. UV-Vis and cyclic voltammetry techniques were used to analyse the stability and the reducing ability of the complexes. In vitro anti-proliferative studies by MTT assay, apoptotic behaviour and cellular uptake studies were investigated followed by the in silico interaction with ribonucleotide reductase (RNR) enzyme. RESULTS The spectral studies predicted distorted tetrahedral geometry around silver(I) ion and distorted octahedral geometry around nickel(II) and copper(II) ions. The reducing ability of the copper(II) complexes was analysed using ascorbic acid by UV-Vis and cyclic voltammetry techniques, which authenticate the reducing ability of the complexes and the possible interactions within the cells. The in vitro anti-proliferative activity of the synthesized complexes against three cancerous (estrogen positive (MCF-7), estrogen negative (MDA-MB-231) and pancreatic (PANC-1)) and one normal (MCF-10a) cell lines by MTT assay showed enhanced activity for copper(II) complexes 11 and 12 containing the hydrophobic substituents. The apoptotic and cellular uptake studies showed that the complex 12 is readily taken up by PANC-1 cell lines and induces ROS-mediated mitochondrial and caspase-dependent apoptosis. The in silico studies indicated hydrogen bonding, hydrophobic and π-pair (π-π, π-σ and π-cation) interactions between the complexes and the ribonucleotide reductase (RNR) enzyme. The in silico pharmacokinetics studies of the complexes predicted the drug-likeness characteristics of the complexes. CONCLUSION The synthesized complexes are found to be less toxic to normal cells and inhibit the growth of cancerous cells by inducing mitochondrial-mediated and caspase dependent apoptotic pathway in PANC-1 cells.
Collapse
Affiliation(s)
- Sundaram Bharathi
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India; Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai 600 117, India
| | - Dharmasivam Mahendiran
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India.
| |
Collapse
|
4
|
Suguna S, Nandhakumar R, Prabhu J. Anthracene benzene conjugate (ABC): An asymmetric Schiff base for the selective detection of Ag + ion using fluorimetry and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122196. [PMID: 36473294 DOI: 10.1016/j.saa.2022.122196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/20/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Anthracene based chemosensor ABC has been synthesized and characterized through 1H, 13C NMR, mass spectral studies. UV absorption and emission studies performed to identify the sensing behavior of chemosensor ABC. The probe ABC, originally bright fluorescent, selectively sense Ag+ ion by the quenching the fluorescence intensity through a "Switch On-off" process and quench the fluorescence due to the heavy atom effect interaction with the free chemosensor. The binding constant of the probe ABC with Ag+ was calculated as 5.4 × 104 M-1 and the limit of detection upto 1.4 nM level. The practical utilization of the probe ABC was demonstrated by applying to the real water and soil sample analysis, latent finger print, and the sensor as a fluorescent ink.
Collapse
Affiliation(s)
- S Suguna
- Fluorensic Materials Laboratory, Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - R Nandhakumar
- Fluorensic Materials Laboratory, Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India.
| | - J Prabhu
- Fluorensic Materials Laboratory, Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India.
| |
Collapse
|
5
|
One pot synthesis of two potent Ag(I) complexes with quinoxaline ligand, X-ray structure, Hirshfeld analysis, antimicrobial, and antitumor investigations. Sci Rep 2022; 12:20881. [PMID: 36463246 PMCID: PMC9719528 DOI: 10.1038/s41598-022-24030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
In one pot, the self-assembly of AgNO3 and 2-chloroquinoxaline (2Cl-quinox) in water-ethanol mixture afforded two novel crystalline Ag(I) complexes. The major product is the polymeric complex [Ag(2Cl-quinox)(NO3)]n; (1), while the minor product (2) comprises two molecules which are the monomeric [Ag(2Cl-quinox)2(NO3)]; (2a) and polymeric [Ag(2Cl-quinox)(NO3)]n; (2b) complexes. The single crystal X-ray structure revealed that 1 and 2b are made up of two-dimensional infinite sheets. In contrast, 2a is a monomeric complex which has a highly distorted tetrahedral geometry around Ag(I) center. In all cases, the 2Cl-quinox molecule acts as a terminal monodentate ligand. Complexes 1 and 2b have similar molecular structures and also have almost similar crystal packing. Using Hirshfeld surface analysis, the O…H hydrogen bonds and π-π stacking interactions contributed significantly to the molecular packing. Both complexes have broad-spectrum action towards multi drug-resistance bacteria. The most effective function of 2 is against Proteus morganii, with a MIC value of 8 μg/mL. Complex 2 (IC50 = 5.93 ± 0.52 μg/mL) has remarkably greater cytotoxic effect against lung carcinoma (A-549) than cis-platin (IC50 = 7.5 ± 0.69 μg/mL) and AgNO3 (IC50 = 14.7 ± 0.53 μg/mL). The higher Ag-content in 2 could be the main reason for its higher cytotoxicity than 1.
Collapse
|
6
|
Synthesis of a New Dinuclear Ag(I) Complex with Asymmetric Azine Type Ligand: X-ray Structure and Biological Studies. INORGANICS 2022. [DOI: 10.3390/inorganics10110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspects of the molecular and supramolecular structure of the new dinuclear [Ag(L)(NO3)]2 complex, where L is 2-((E)-(((E)-1-(thiazol-2-yl)ethylidene)hydrazono)methyl)phenol, were discussed. The complex was crystallized in the monoclinic crystal system and P21/n space group. The unit cell parameters are a = 10.3274(2) Å, b = 11.4504(3) Å, c = 12.7137(3) Å and β = 108.2560(10)°. The asymmetric unit comprised one [Ag(L)(NO3)] formula in which the azine and nitrate ligand groups act as NN- and OO-bidentate chelates, respectively. The coordination environment of the Ag(I) is completed by one weak Ag-O bond with another [Ag(L)(NO3)] unit, leading to the dinuclear formula [Ag(L)(NO3)]2. This was clearly revealed by Hirshfeld analysis. Additionally, the Ag…C, O…H and C…C intermolecular interactions played an important role in the molecular packing of the studied complex. The antimicrobial, antioxidant and cytotoxic activities of the [Ag(L)(NO3)]2 complex and the free ligand (L) were discussed. While the [Ag(L)(NO3)]2 complex showed very weak antioxidant activity, the results of the antifungal and cytotoxic activities were promising. The inhibition zone diameters (IZD) and the minimum inhibitory concentration (MIC) values were determined to be 31 mm and 20 μg/mL, respectively, against A. fumigatus, which is compared to 17 mm and 156 μg/mL, respectively, for the positive control Ketoconazole. Generally, the Ag(I) complex has better antimicrobial activities than the free ligand against all microbes except for S. aureus, where the free ligand has higher activity. Additionally, the IC50 value against colon carcinoma (HCT-116 cell line) was determined to be 12.53 ± 0.69 µg/mL, which is compared to 5.35 ± 0.49 µg/mL for cis-platin. Additionally, the Ag(I) complex displays better cytotoxicity than the free ligand (L) (242.92 ± 8.12 µg/mL).
Collapse
|
7
|
New bioactive 1D Ag(I) coordination polymers with pyrazole and triazine ligands; Synthesis, X-ray structure, Hirshfeld analysis and DFT studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Elbadawy HA, Khalil SMSM, Al‐Wahaib D, Barakat A, Soliman SM, Eldissouky A. Ag(I)‐mediated hydrolysis of hydrazone to azine; synthesis, X‐ray structure, and biological investigations of two new Ag(I)‐azine complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hemmat A. Elbadawy
- Chemistry Department Faculty of Science Alexandria University Alexandria Egypt
| | | | - Dhuha Al‐Wahaib
- Chemistry Department, Faculty of Science Kuwait University Safat Kuwait
| | - Assem Barakat
- Department of Chemistry College of Science, King Saud University Riyadh Saudi Arabia
| | - Saied M. Soliman
- Chemistry Department Faculty of Science Alexandria University Alexandria Egypt
| | - Ali Eldissouky
- Chemistry Department Faculty of Science Alexandria University Alexandria Egypt
| |
Collapse
|
9
|
Synthesis, X-ray Structure, Antimicrobial and Anticancer Activity of a Novel [Ag(ethyl-3-quinolate)2(citrate)] Complex. CRYSTALS 2022. [DOI: 10.3390/cryst12030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel Ag(I) citrate complex with ethyl-3-quinolate (Et3qu) was synthesized. Its structure was confirmed using X-ray single crystal to be [Ag(Et3qu)2(citrate)]. It crystallized in the Triclinic crystal system and P-1 space group with unit cell parameters of a = 8.6475(2) Å, b = 11.4426(3) Å, c = 15.2256(3) Å, α = 73.636(2)°, β = 79.692(2)° and γ = 86.832(2)°, while the unit cell volume was 1422.19(6) Å3. In the unit cell, there are two [Ag(Et3qu)2(citrate)] molecules and one unit as the asymmetric formula. The molecular structure comprised one Ag(I) coordinated with two Et3qu molecules via two almost equidistant Ag-N bonds and one citrate ion acting as a mono-negative monodentate ligand via a short Ag-O bond (2.5401(14) Å). Hence, Ag(I) is tri-coordinated and has a highly distorted triangular planar coordination geometry which is more like to be described as a slightly distorted T-shape. The supramolecular structure of the [Ag(Et3qu)2(citrate)] complex was analyzed using Hirshfeld calculations. The H···H (39.3–40.1%), O···H (33.2-34.0%), C···C (9.1–9.5%) and C···H (7.2–7.4%) contacts shared significantly in the packing of the studied Ag(I) complex. The antimicrobial and anticancer activities of the Ag(I) complex were investigated. The [Ag(Et3qu)2(citrate)] complex has broad-spectrum antimicrobial activity specifically against the fungus A. fumigatus. In addition, the IC50 values of 1.87 ± 0.09 µg/mL and 0.95 ± 0.06 µg/mL against the breast MCF-7 and lung A-549 cell lines, respectively, revealed the potent anticancer activity of the [Ag(Et3qu)2(citrate)] complex compared to the free Et3qu (IC50 = 30.64 ± 1.98 and 22.89 ± 1.48 µg/mL, respectively).
Collapse
|
10
|
Synthesis, Spectroscopy, Single-Crystal Structure Analysis and Antibacterial Activity of Two Novel Complexes of Silver(I) with Miconazole Drug. Int J Mol Sci 2021; 22:ijms22041510. [PMID: 33546211 PMCID: PMC7919260 DOI: 10.3390/ijms22041510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022] Open
Abstract
In a previous article, we reported on the higher toxicity of silver(I) complexes of miconazole [Ag(MCZ)2NO3 (1)] and [Ag(MCZ)2ClO4 (2)] in HepG2 tumor cells compared to the corresponding salts of silver, miconazole and cisplatin. Here, we present the synthesis of two silver(I) complexes of miconazole containing two new counter ions in the form of Ag(MCZ)2X (MCZ = 1-[2-(2,4-dichlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl]-1H-imidazole]; X = BF4− (3), SbF6− (4)). The novel silver(I) complexes were characterized by elemental analysis, 1H NMR, 13C NMR and infrared (IR) spectroscopy, electrospray ionization (ESI)-MS spectrometry and X-ray-crystallography. In the present study, the antimicrobial activity of all obtained silver(I) complexes of miconazole against six strains of Gram-positive bacteria, five strains of Gram-negative bacteria and yeasts was evaluated. The results were compared with those of a silver sulfadiazine drug, the corresponding silver salts and the free ligand. Silver(I) complexes exhibited significant activity against Gram-positive bacteria, which was much better than that of silver sulfadiazine and silver salts. The highest antimicrobial activity was observed for the complex containing the nitrate counter ion. All Ag(I) complexes of miconazole resulted in much better inhibition of yeast growth than silver sulfadiazine, silver salts and miconazole. Moreover, the synthesized silver(I) complexes showed good or moderate activity against Gram-negative bacteria compared to the free ligand.
Collapse
|
11
|
Gao E, Li Z, Zhu X, Ma Z, Zhu M. Synthesis, characterization, DNA binding, cytotoxicity and molecular docking properties of three novel butterfly‐like complexes with nitrogen‐containing heterocyclic ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Enjun Gao
- School of Chemical EngineeringUniversity of Science and Technology Liaoning Anshan 114051 China
| | - Zhipeng Li
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Xiaopeng Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Zhiyan Ma
- Yingkou Institute of Technology 115014 China
| | - Mingchang Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
12
|
Bharathi S, Mahendiran D, Kumar RS, Choi HJ, Gajendiran M, Kim K, Rahiman AK. Silver(I) metallodrugs of thiosemicarbazones and naproxen: biocompatibility, in vitro anti-proliferative activity and in silico interaction studies with EGFR, VEGFR2 and LOX receptors. Toxicol Res (Camb) 2020; 9:28-44. [PMID: 32440336 PMCID: PMC7233324 DOI: 10.1093/toxres/tfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/27/2019] [Accepted: 01/21/2020] [Indexed: 11/14/2022] Open
Abstract
Four new heteroleptic silver(I) complexes with the general formula [Ag(L1-4)(nap)] (1-4), where L1-4 = 2-(1-(4-substitutedphenyl)ethylidene)hydrazinecarbothioamide and nap = naproxen, have been synthesized and characterized. The geometric parameters determined from density functional theory and UV-Vis studies indicate distorted tetrahedral geometry around silver(I) ion. Fourier transform infrared (FT IR) spectra evidenced asymmetric bidentate coordination mode of carboxyl oxygen atoms of naproxen with silver(I) ion. The complexes are stable for 72 h and biocompatibility was analysed towards normal human dermal fibroblast cells, which showed non-toxic nature up to 100 ng/ml. In vitro anti-proliferative activity of the complexes by MTT assay was tested against three human cancerous cell lines and one non-tumorigenic human breast epithelial cell line (MCF-10a) in which the complex 4 exhibited enhanced activity. The morphological changes observed by acridine orange/ethidium bromide and Hoechst 33258 staining method reveal apoptosis-inducing ability of the complexes. The molecular docking studies suggest hydrogen bonding, hydrophobic and π-pair interactions with the active site of epidermal growth factor receptor, vascular endothelial growth factor receptor 2 and lipoxygenase receptors.
Collapse
Affiliation(s)
- Sundaram Bharathi
- Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India
| | - Dharmasivam Mahendiran
- Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney 2006, Australia
| | - Raju Senthil Kumar
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tiruchengodu 637 205, India
| | - Hyo Jeong Choi
- Division of Bioengineering, School of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Mani Gajendiran
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Aziz Kalilur Rahiman
- Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India
| |
Collapse
|
13
|
Azzarelli N, Ponnala S, Aguirre A, Dampf SJ, Davis MP, Ruggiero MT, Lopez Diaz V, Babich JW, Coogan M, Korter T, Doyle RP, Zubieta J. Defining the origins of multiple emission/excitation in rhenium-bisthiazole complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Fe(III), Cu(II) and U(VI) binuclear complexes with a new isothiosemicarbazone ligand: Syntheses, characterization, crystal structures, thermal behavior and theoretical investigations. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Tan XJ, Wang D, Lei XG, Chen JP. Theoretical insight into the disordered structure of (Z)-2-[(E)-(4-methoxybenzylidene)hydrazinylidene]-1,2-diphenylethanone: the role of noncovalent interactions. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1058-1067. [PMID: 30191899 DOI: 10.1107/s2053229618009762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022]
Abstract
A global glide disorder has been discovered during an X-ray investigation of the crystal structure of (Z)-2-[(E)-(4-methoxybenzylidene)hydrazinylidene]-1,2-diphenylethanone (MHDE, C22H18N2O2) at room temperature. In another crystal, however, such disorder disappears (still at room temperature). Even though the disorder may be partly due to the poor quality of the harvested crystal, the structure can shed light on the nature of disorder. With the help of quantum chemical calculations, it is found that the global disorder seems to be connected with the need for stabilization of the somewhat rigid but mobile and unstable molecular structure. The most relevant feature driving the packing of the disordered structure concerns the slight perturbations (such as glide) of two or more disorder components (fractional occupancies) distributed throughout the crystal.
Collapse
Affiliation(s)
- Xue Jie Tan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Di Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Xu Gang Lei
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jun Peng Chen
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
16
|
Mahendiran D, Kumar RS, Rahiman AK. Heteroleptic silver(I) complexes with 2,2′:6′,2″-terpyridines and naproxen: DNA interaction, EGFR/VEGFR2 kinase, growth inhibition and cell cycle arrest studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:601-615. [DOI: 10.1016/j.msec.2017.03.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 10/20/2022]
|
17
|
Njogu EM, Omondi B, Nyamori VO. Silver(I)-pyridinyl Schiff base complexes: Synthesis, structural characterization and reactivity in ring-opening polymerisation of ε-caprolactone. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Cardoso JMS, Correia I, Galvão AM, Marques F, Carvalho MFNN. Synthesis of Ag(I) camphor sulphonylimine complexes and assessment of their cytotoxic properties against cisplatin-resistant A2780cisR and A2780 cell lines. J Inorg Biochem 2016; 166:55-63. [PMID: 27835775 DOI: 10.1016/j.jinorgbio.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/10/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022]
Abstract
Camphorsulphonylimine complexes [Ag(NO3)(IL)2] (IL=C12H19N3SO2, 1) and [(AgNO3)2(IIL)] (IIL=C22H23N3SO2, 2) were synthesized and characterized by elemental analysis, spectroscopy (IR, NMR) and cyclic voltammetry. [Ag(NO3)(IL)2] crystalizes in the monoclinic C2 space group with a triangular geometry assuming a chalice-type shape. The anti-proliferative properties of the new complexes 1 and 2 and those of the previously reported [Ag(NO3)(IIIL)] (IIIL=C16H18N3SO2, 3) were assessed against the human ovarian cancer cells (cisplatin-sensitive A2780, cisplatin-resistant A2780cisR) and the non-tumoral human HEK 293 cell line, using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The NR (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) assay was alternatively used to assess the cytotoxicity on the A2780 cells. Results from the MTT assay (48h exposure) show that the complexes display IC50 values lower (by at least one order of magnitude) than cisplatin, while the cytotoxicity of AgNO3 is of the same order of cisplatin. The camphorsulphonylimine ligands display irrelevant (IL, IIIL) or no cytotoxicity (IIL). The highest cytotoxicity (lower IC50) was found for [(AgNO3)2(IIL)]. The binding ability of the complexes to calf thymus-deoxyribonucleic acid (CT-DNA) was studied by fluorescence. Constants (Ksv, Ka) and the number (n) of binding centres to DNA were calculated showing that DNA intercalation possibly occurs in the cases of complexes 2 and 3, while a more complicated process operates for 1. As expected from the cytotoxicity, [(AgNO3)2(IIL)] displays the highest binding affinity (Ka=1.61×105 M-1). No binding to DNA was detected for AgNO3 or IIL under the experimental conditions used. The binding trend to CT-DNA found by fluorescence was corroborated by cyclic voltammetry.
Collapse
Affiliation(s)
- João M S Cardoso
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - Adelino M Galvão
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal.
| |
Collapse
|
19
|
1D polymeric copper(I) and dinuclear silver(I) complexes of a bidentate Schiff base ligand: Synthesis, spectroscopic characterization and thermal studies. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Packianathan S, Kumaravel G, Raman N. DNA interaction, antimicrobial and molecular docking studies of biologically interesting Schiff base complexes incorporating 4-formyl-N
,N
-dimethylaniline and propylenediamine. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Seemon Packianathan
- Research Department of Chemistry; VHNSN College; Virudhunagar 626 001 Tamilnadu India
| | - Ganesan Kumaravel
- Research Department of Chemistry; VHNSN College; Virudhunagar 626 001 Tamilnadu India
| | - Natarajan Raman
- Research Department of Chemistry; VHNSN College; Virudhunagar 626 001 Tamilnadu India
| |
Collapse
|
21
|
Synthesis, crystal structure, spectroscopic properties and potential anti-cancerous activities of four unsaturated bis-norcantharimides. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Antibacterial Activity and Cytotoxicity of Silver(I) Complexes of Pyridine and (Benz)Imidazole Derivatives. X-ray Crystal Structure of [Ag(2,6-di(CH2OH)py)2]NO3. Molecules 2016; 21:87. [PMID: 26828469 PMCID: PMC6274122 DOI: 10.3390/molecules21020087] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 11/16/2022] Open
Abstract
Selected aspects of the biological activity of a series of six nitrate silver(I) complexes with pyridine and (benz)imidazole derivatives were investigated. The present study evaluated the antibacterial activities of the complexes against three Gram-negative strains: Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 25922 and Proteus hauseri ATCC 13315. The results were compared with those of silver nitrate, a silver sulfadiazine drug and appropriate ligands. The most significant antibacterial properties were exerted by silver(I) complexes containing benzimidazole derivatives. The cytotoxic activity of the complexes was examined against B16 (murine melanoma) and 10T1/2 (murine fibroblasts) cells. All of the tested silver(I) compounds were not toxic to fibroblast cells in concentration inhibited cancer cell (B16) viability by 50%, which ranged between 2.44–28.65 µM. The molecular and crystal structure of silver(I) complex of 2,6-di(hydroxymethyl)pyridine was determined by single-crystal X-ray diffraction analysis. The most important features of the crystal packing and intermolecular non-covalent interactions in the Ag(I) complex were quantified via Hirshfeld surface analysis.
Collapse
|
23
|
Li GS, Zhang HL. Characterization and cytotoxic property of a ladder-like polymeric silver(I) complex derived from 3-aminopyrazine-2-carboxylic acid. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615080247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Tan XJ, Hao XQ, Zhao QZ, Cheng SS, Xie WL, Xing DX, Liu Y, Song LZ. Mono-Schiff-base or di-Schiff-base? Synthesis, spectroscopic, X-ray structural and DFT study of a series of Schiff-bases derived from benzil dihydrazone. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.06.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Wasukan N, Srisung S, Kuno M, Kulthong K, Maniratanachote R. Interaction evaluation of silver and dithizone complexes using DFT calculations and NMR analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:830-838. [PMID: 26001102 DOI: 10.1016/j.saa.2015.04.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/27/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with metal ion, leading to the change of signals for the naked-eyes which is very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of dithizone with silver using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver-dithizone complexes was supported by UV-Vis spectroscopy, FT-IR spectrum that were simulated by using B3LYP/6-31G(d,p) and (1)H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom with minimized binding energies of silver-dithizone interaction. Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.
Collapse
Affiliation(s)
- Nootcharin Wasukan
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand; Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumwit 23, Wattana District, Bangkok 10110, Thailand
| | - Sujittra Srisung
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumwit 23, Wattana District, Bangkok 10110, Thailand.
| | - Mayuso Kuno
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumwit 23, Wattana District, Bangkok 10110, Thailand
| | - Kornphimol Kulthong
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rawiwan Maniratanachote
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
26
|
Fasihizad A, Barak T, Ahmadi M, Dusek M, Pojarova M. Synthesis, characterization, thermogravimetry, and structural study of uranium complexes derived from dibasic S-alkylated thiosemicarbazone ligands. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.936860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ahad Fasihizad
- Research and Development Division of Maral Corporation, Mashhad, Iran
| | - Tahere Barak
- Research and Development Division of Maral Corporation, Mashhad, Iran
| | - Mehdi Ahmadi
- Research and Development Division of Maral Corporation, Mashhad, Iran
| | - Michal Dusek
- Institute of Physics of the ASCR, Prague, Czech Republic
| | | |
Collapse
|