1
|
Elsayed SA, Elnabky IM, Aboelnga MM, El-Hendawy AM. Palladium(ii), platinum(ii), and silver(i) complexes with 3-acetylcoumarin benzoylhydrazone Schiff base: Synthesis, characterization, biomolecular interactions, cytotoxic activity, and computational studies. RSC Adv 2024; 14:19512-19527. [PMID: 38895519 PMCID: PMC11184370 DOI: 10.1039/d4ra02738h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
New Pd(ii) (C1), Pt(ii) (C2), and Ag(i) (C3) complexes derived from 3-acetylcoumarin benzoylhydrazone (HL) Schiff base were synthesized and characterized by FTIR, 1H NMR, UV-visible spectroscopies along with elemental analysis (C, H, N), magnetic, molar conductivity measurements, and DFT calculations. The obtained results suggested that the ligand had different behaviors in the complexes: mono-negative tridentate (C1) and neutral tridentate (C2) as an ONO-donor and neutral bidentate (C3) as an ON-donor. Quantum chemistry calculations were performed to validate the stability of the suggested geometries and indicated that all the complexes possess tetra-coordinated metal ions. The binding affinity of all the compounds toward calf thymus (ctDNA), yeast (tRNA), and bovine serum albumin (BSA) was evaluated by absorption/emission spectral titration studies, which revealed the intercalative binding to ctDNA and tRNA and static binding upon complex formation with BSA. Molecular insights into the binding affinity of the characterized complexes were provided through conducting molecular docking analysis. Moreover, the cytotoxic activity (in vitro) of the compounds was screened against human cancerous cell lines and a non-cancerous lung fibroblast (WI38) one using cis-platin as a reference drug. The IC50 and selective index (SI) values indicated the higher cytotoxic activity of all the metal complexes compared to their parent ligand. Among all the compounds, the complex C2 showed the highest activity. These results confirmed the improvement of the anticancer activity of the ligand by incorporating the metal ions. In addition, flow cytometry results showed that complexes C1 and C2 induced cell cycle arrest at S and G1/S, respectively.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Islam M Elnabky
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| |
Collapse
|
2
|
Gatto CC, Cavalcante CDQO, Lima FC, Nascimento ÉCM, Martins JBL, Santana BLO, Gualberto ACM, Pittella-Silva F. Structural Design, Anticancer Evaluation, and Molecular Docking of Newly Synthesized Ni(II) Complexes with ONS-Donor Dithiocarbazate Ligands. Molecules 2024; 29:2759. [PMID: 38930825 PMCID: PMC11206525 DOI: 10.3390/molecules29122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.
Collapse
Affiliation(s)
- Claudia C. Gatto
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Cássia de Q. O. Cavalcante
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Francielle C. Lima
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - João B. L. Martins
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - Brunna L. O. Santana
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Ana C. M. Gualberto
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Fabio Pittella-Silva
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| |
Collapse
|
3
|
Structural, theoretical and biological activity of mono and binuclear nickel(II) complexes with symmetrical and asymmetrical 4,6-diacetylresorcinol-dithiocarbazate ligands. J Inorg Biochem 2021; 224:111559. [PMID: 34390890 DOI: 10.1016/j.jinorgbio.2021.111559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 01/20/2023]
Abstract
The present work reports the synthesis and a structural study of two novel dithiocarbazate, the 4,6-diacetylresorcinol-S-benzyldithiocarbazate (H3L1) and the 4,6-diacetylresorcinol-bis(S-benzyldithiocarbazate) (H4L2), and their Ni(II) complexes, [Ni(HL1)(Py)] (1) and [Ni2(L2)(PPh3)2] (2). Single crystal X-ray analyzes reveal mono and binuclear complexes and the metal centers with distorted square planar geometry. The analyses of the Hirshfeld surface and fingerprints plots revealed intermolecular contacts attributed to the H···H and C···H/H···C bonds. The Density Functional Theory (DFT), with the B3LYP functional and 6-311-G(d,p)/LanL2DZ basis sets, was employed to optimize the geometries of synthesized compounds. From the resulting geometries, the highest occupied and lowest unoccupied molecular orbital maps (HOMO-LUMO), orbital energy gap, electron localization function (ELF), electron density, natural bond orbital (NBO) analysis, and complexation of the ligands with Ni(II) were calculated supporting the experimental data. The ESI (+)-MS/MS data indicated the presence in solution of the characteristic fragmentation with the [H3L1]+ and [H4L2]+ molecular ions for the ligands. The pharmacological potential of the dithiocarbazate ligands and their Ni(II) complexes were evaluated in vitro against MDA-MB-231 human breast cancer cells. A remarkable cytotoxic activity was observed, more evident for free ligands than complexes at low concentrations; however, this latter showed a better dose-response pattern, being more attractive in terms of pharmacokinetics and therapeutic window.
Collapse
|
4
|
Burlov AS, Vlasenko VG, Chal’tsev BV, Koshchienko YV, Levchenkov SI. Metal Complexes of Aroyl(acyl)benzoylhydrazones of Aromatic Aldehydes and Ketones: Coordination Modes and Properties. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421070010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zülfikaroğlu A. The synthesis, experimental and theoretical characterization of a Pd(II) complex from diacetyl monoxime isobutyrohydrazone. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Mohammadnezhad G, Abad S, Farrokhpour H. Theoretical Evaluation of One-Pot Synthesis of Aliphatic PNP Pincer Ligands. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619110052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sultana S, Borah G, Gogoi PK. Mont-K10 Supported Fe(II) Schiff-Base Complex as an Efficient Catalyst for Hydrogenation of Ketones. Catal Letters 2019. [DOI: 10.1007/s10562-019-02810-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
New transition metal complexes of 2,4-dihydroxybenzaldehyde benzoylhydrazone Schiff base (H2dhbh): Synthesis, spectroscopic characterization, DNA binding/cleavage and antioxidant activity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Biswas S, Sarkar D, Roy P, Mondal TK. Synthesis and characterization of a ruthenium complex with bis(diphenylphosphino)propane and thioether containing ONS donor ligand: Application in transfer hydrogenation of ketones. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
1-{4-[(Hexyloxy)methyl]pyridin-2-yl}ethanone. MOLBANK 2017. [DOI: 10.3390/m940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Ruthenium Carbonyl Complexes with 4-R-Benzaldehyde Thiosemicarbazone as an Ancillary Ligand: Synthesis and, Structural, Spectral and Electrochemical Properties. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2016. [DOI: 10.1007/s40010-016-0303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Synthesis, structure and catalytic applications of octahedral nickel(II) benzoylhydrazone complex: Suzuki–Miyaura cross-coupling reaction of aryl bromides with arylboronic acid. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Manikandan TS, Saranya S, Ramesh R. Synthesis and catalytic evaluation of ruthenium(II) benzhydrazone complex in transfer hydrogenation of ketones. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Han HF, Zhang SF, Guo ZQ, Tong HB, Wei XH. Three asymmetric guanidinato metal complexes: Synthesis, crystal structures and their use as pre-catalysts in the Meerwein–Ponndorf–Verley reduction. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Affiliation(s)
- Dong Wang
- ISM, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|