1
|
Sobornova VV, Mulloyarova VV, Belov KV, Dyshin AA, Tolstoy PM, Kiselev MG, Khodov IA. Structural and sorption characteristics of an aerogel composite material loaded with flufenamic acid: insights from MAS NMR and high-pressure NOESY studies. Phys Chem Chem Phys 2024; 26:27301-27313. [PMID: 39439409 DOI: 10.1039/d4cp03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The structural and sorption characteristics of a composite material consisting of a silica aerogel loaded with flufenamic acid were investigated using a variety of nuclear magnetic resonance techniques. The composite structure was analyzed using magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, which revealed significant interactions between the aerogel matrix and the FFA molecules. Solid-state 29Si NMR provided insights into the aerogel's stability, while 1H and 13C NMR confirmed the presence of FFA in the matrix, with signals from FFA molecules observed alongside tetraethoxysilane (TEOS) groups. Ethanol-induced desorption of FFA led to narrowed spectral lines, suggesting the breaking of intermolecular hydrogen bonds. 19F MAS NMR spectra indicated changes in FFA local environments upon loading into AG pores. Evaluation of CO2 sorption characteristics using 13C NMR demonstrated a slower sorption rate for AG + FFA than that for pure AG, attributed to decreased pore volume. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) was employed to explore the conformational behavior of FFA within the aerogel matrix. The results indicated a shift in conformer populations, particularly those related to the rotation of one cyclic fragment relative to the other. These findings provide insights into the structural and sorption characteristics of the AG + FFA composite, which are valuable for developing novel drug solid forms.
Collapse
Affiliation(s)
- Valentina V Sobornova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Valeriya V Mulloyarova
- Institute of Chemistry, Saint Petersburg State University, 198504, Petergof, Universitetskii prospect, 26, Saint Petersburg, Russia
| | - Konstantin V Belov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Alexey A Dyshin
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Peter M Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 198504, Petergof, Universitetskii prospect, 26, Saint Petersburg, Russia
| | - Mikhail G Kiselev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| |
Collapse
|
2
|
Kelsall KN, Foroughi LM, Frank DS, Schenck L, LaBuda A, Matzger AJ. Structural Modifications of Polyethylenimine to Control Drug Loading and Release Characteristics of Amorphous Solid Dispersions. Mol Pharm 2023; 20:1779-1787. [PMID: 36719910 DOI: 10.1021/acs.molpharmaceut.2c00970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crystalline drugs with low solubility have the potential to benefit from delivery in the amorphous form. The polymers used in amorphous solid dispersions (ASDs) influence their maximum drug loading, solubility, dissolution rate, and physical stability. Herein, the influence of hydrophobicity of crosslinked polyethylenimine (PEI) is investigated for the delivery of the BCS class II nonsteroidal anti-inflammatory drug flufenamic acid (ffa). Several synthetic variables for crosslinking PEI with terephthaloyl chloride were manipulated: solvent, crosslinking density, reactant concentration, solution viscosity, reaction temperature, and molecular weight of the hyperbranched polymer. Benzoyl chloride was employed to cap amine groups to increase the hydrophobicity of the crosslinked materials. Amorphous deprotonated ffa was present in all ASDs; however, the increased hydrophobicity and reduced basicity from benzoyl functionalization led to a combination of amorphous deprotonated ffa and amorphous neutral ffa in the materials at high drug loadings (50 and 60 wt %). All ASDs demonstrated enhanced drug delivery in acidic media compared to crystalline ffa. Physical stability testing showed no evidence of crystallization after 29 weeks under various relative humidity conditions. These findings motivate the broadening of polymer classes employed in ASD formation to include polymers with very high functional group concentrations to enable loadings not readily achieved with existing polymers.
Collapse
Affiliation(s)
- Kristen N Kelsall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leila M Foroughi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Derek S Frank
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Anthony LaBuda
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam J Matzger
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Lazou M, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Transition metal(II) complexes with the non–steroidal anti–inflammatory drug oxaprozin: Characterization and biological profile. J Inorg Biochem 2023; 243:112196. [PMID: 36966675 DOI: 10.1016/j.jinorgbio.2023.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
A series of copper(II), nickel(II) and cobalt(II) complexes with the non-steroidal anti-inflammatory drug oxaprozin (Hoxa) have been synthesized and characterized by diverse techniques. The crystal structures of two copper(II) complexes, namely the dinuclear complex [Cu2(oxa)4(DMF)2] (1) and the polymeric complex {[Cu2(oxa)4]·2MeOH·0.5MeOH}2 (12) were determined by single-crystal X-ray diffraction studies. In order to evaluate in vitro the antioxidant activity of the resultant complexes, their scavenging ability towards 1,1-diphenyl-picrylhydrazyl (DPPH), hydroxyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was investigated revealing their high effectiveness against these radicals. The binding of the complexes to bovine serum albumin and human serum albumin was examined and the corresponding determined albumin-binding constants showed a tight and reversible interaction. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques including UV-vis spectroscopy, cyclic voltammetry, DNA-viscosity measurements and competitive studies with ethidium bromide. Intercalation may be proposed as the most possible DNA-interaction mode of the complexes.
Collapse
|
4
|
Passeri G, Northcote-Smith J, Perera R, Gubic N, Suntharalingam K. An Osteosarcoma Stem Cell Potent Nickel(II)-Polypyridyl Complex Containing Flufenamic Acid. Molecules 2022; 27:3277. [PMID: 35630754 PMCID: PMC9143476 DOI: 10.3390/molecules27103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Apoptosis resistance is inherent to stem cell-like populations within tumours and is one of the major reasons for chemotherapy failures in the clinic. Necroptosis is a non-apoptotic mode of programmed cell death that could help bypass apoptosis resistance. Here we report the synthesis, characterisation, biophysical properties, and anti-osteosarcoma stem cell (OSC) properties of a new nickel(II) complex bearing 3,4,7,8-tetramethyl-1,10-phenanthroline and two flufenamic acid moieties, 1. The nickel(II) complex 1 is stable in both DMSO and cell media. The nickel(II) complex 1 kills bulk osteosarcoma cells and OSCs grown in monolayer cultures and osteospheres grown in three-dimensional cultures within the micromolar range. Remarkably, 1 exhibits higher potency towards osteospheres than the metal-based drugs used in current osteosarcoma treatment regimens, cisplatin and carboplatin, and an established anti-cancer stem cell agent, salinomycin (up to 7.7-fold). Cytotoxicity studies in the presence of prostaglandin E2 suggest that 1 kills OSCs in a cyclooxygenase-2 (COX-2) dependent manner. Furthermore, the potency of 1 towards OSCs decreased significantly upon co-treatment with necrostatin-1 or dabrafenib, well-known necroptosis inhibitors, implying that 1 induces necroptosis in OSCs. To the best of our knowledge, 1 is the first compound to implicate both COX-2 and necroptosis in its mechanism of action in OSCs.
Collapse
|
5
|
Bashir M, Yousuf I, Prakash Prasad C. Mixed Ni(II) and Co(II) complexes of nalidixic acid drug: Synthesis, characterization, DNA/BSA binding profile and in vitro cytotoxic evaluation against MDA-MB-231 and HepG2 cancer cell lines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120910. [PMID: 35077983 DOI: 10.1016/j.saa.2022.120910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, herein we report the synthesis, structural characterization and in vitro cytotoxic evaluation of two mixed Co(II)/Ni(II)-nalidixic acid-bipyridyl complexes (1 and 2). The structural analysis of metal complexes 1 and 2 was carried out by analytical and multispectroscopic techniques (FT-IR, UV-vis, EPR, sXRD). The crystallographic details of complexes 1 and 2 revealed a monoclinic crystal system with P21/c space group. DFT studies of complexes were performed to get electronic structure and localization of HOMO and LUMO electron densities. Hirshfeld surface analysis of metal complexes 1 and 2 was employed to understand the various intermolecular interactions (C-H···O, N-H···H and O-H···O) that define the stability of crystal lattice structures. The comparative interaction studies of complex 1 and complex 2 with DNA/BSA were performed by diverse multispectroscopic and analytical techniques to evaluate their chemotherapeutic potential. The magnitude of the DNA binding propensity and binding mode was verified by calculating Kb, K and Ksv values. Higher binding affinity was observed in case of complex 2via intercalative mode. Furthermore, the cytotoxic assessment of complexes 1 and 2 was examined against MDA-MB-231 (triple negative human breast cancer cell line) and HepG2 (liver carcinoma cell line) employing MTT assay which revealed remarkably effecient and specific cytotoxic activity of complex 2.
Collapse
Affiliation(s)
- Masrat Bashir
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | |
Collapse
|
6
|
Yılmaz ZK, Özdemir Ö, Aslim B, Suludere Z, Şahin E. A new bio-active asymmetric-Schiff base: synthesis and evaluation of calf thymus DNA interaction, topoisomerase IIα inhibition, in vitro antiproliferative activity, SEM analysis and molecular docking studies. J Biomol Struct Dyn 2022; 41:2804-2822. [PMID: 35179080 DOI: 10.1080/07391102.2022.2039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the asymmetric-Schiff base 2-(4-(2-hydroxybenzylideneamino)benzylideneamino)benzoic acid (SB-2) was newly synthesized and characterized by various spectroscopic methods. The interaction of SB-2 with calf thymus DNA was investigated by UV-vis, fluorescence spectroscopy and molecular docking methods. It was determined that SB-2 effectively binds to DNA via the intercalation mode. DNA electrophoretic mobility experiments displayed that topoisomerase IIα could not cleave pBR322 plasmid DNA in the presence of SB-2, confirming that the Schiff base acts as a topo II suppressor. In the molecular docking studies, SB-2 was found to show an affinity for both the DNA-topoisomerase IIα complex and the DNA. In vitro antiproliferative activity of SB-2 was screened against HT-29 (colorectal) and HeLa (cervical) human tumor cell lines by MTT assay. SB-2 diminished the cell viability in a concentration- and incubation time-dependent manner. The ability of SB-2 to measure DNA damage in tumor cells was evaluated with cytokinesis-block micronucleus assay after incubation 24 h and 48 h. Light and scanning electron microscopy experiments of tumor cells demonstrated an incubation time-dependent increase in the proportion of apoptotic cells (nuclear condensation and apoptotic bodies) suggesting that autophagy and apoptosis play a role in the death of cells. Based on the obtained results, it may be considered that SB-2 is a candidate for DNA-targeting antitumor drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zehra Kübra Yılmaz
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Özlem Özdemir
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Egemen Şahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Vijayan T, Kim J, Azam M, Al‐Resayes SI, Stalin A, Kannan BS, Jayamani A, Ayyakannu A, Nallathambi S. Influence of co‐ligand on the biological properties of Schiff base metal complexes: Synthesis, characterization, cytotoxicity, and antimicrobial studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thamilarasan Vijayan
- Department of Industrial Chemistry, School of Chemical Sciences Alagappa University Karaikudi India
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan China
| | - Jinheung Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Mohammad Azam
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Saud I. Al‐Resayes
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine Zhejiang A&F University Hangzhou China
| | | | - Arumugam Jayamani
- Department of Chemistry, Faculty of Applied Sciences Manav Rachna University Faridabad Haryana India
| | | | | |
Collapse
|
8
|
Barmpa A, Geromichalos GD, Hatzidimitriou AG, Psomas G. Nickel(II)-meclofenamate complexes: Structure, in vitro and in silico DNA- and albumin-binding studies, antioxidant and anticholinergic activity. J Inorg Biochem 2021; 222:111507. [PMID: 34139455 DOI: 10.1016/j.jinorgbio.2021.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Five novel nickel(II) complexes with the non-steroidal anti-inflammatory drug sodium meclofenamate (Na-mclf) have been synthesized and characterized in the absence or co-existence of the nitrogen-donors imidazole (Himi), 2,2'-bipyridylamine (bipyam), 2,2'-bipyridylketoxime (Hpko) and 2,9-dimethyl-1,10-phenanthroline (neoc); namely [Ni(mclf-O)2(Himi)2(MeOH)2], [Ni(mclf-O)2(MeOH)4], [Ni(mclf-O)(mclf-O,O')(bipyam)(MeOH)]·0.25MeOH, [Ni(mclf-O,O')2(neoc)] and [Ni(mclf-O)2(Hpko-N,N')2]·MeOH·0.5H2O. The affinity of the complexes for calf-thymus (CT) DNA was investigated by various techniques and intercalation is suggested as the most possible interaction mode. The interaction of the complexes for bovine and human serum albumins was also investigated in order to determine the binding constants, concluding that the complexes bind reversibly to albumins for the transportation towards their target cells or tissues and their release upon arrival at biotargets. The antioxidant activity of the compounds was evaluated via their ability to scavenge 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) free radicals and to reduce H2O2. For the determination of the anticholinergic ability of the complexes the in vitro inhibitory activity against the enzymes acetylcholinesterase and butyrylcholinesterase was evaluated and presented promising results. The in silico molecular modeling calculations employed provide useful insights for the understanding of the mechanism of action of the studied complexes at a molecular level. This applies on both the impairment of DNA by its binding with the studied complexes and transportation through serum albumins, as well as the ability of these compounds to act as anticholinergic agents.
Collapse
Affiliation(s)
- Amalia Barmpa
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George D Geromichalos
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
9
|
Nnabuike GG, Mondal S, Salunke-Gawali S, Patil AS, Butcher RJ, Obaleye JA. Structural features of nickel(II) mixed ligand complexes with mefenamic acid and nitrogen donor ligands. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Dimiza F, Hatzidimitriou AG, Sanakis Y, Papadopoulos AN, Psomas G. Trinuclear and tetranuclear iron(III) complexes with fenamates: Structure and biological profile. J Inorg Biochem 2021; 218:111410. [PMID: 33721718 DOI: 10.1016/j.jinorgbio.2021.111410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
The interaction of FeCl3 with the fenamate non-steroidal anti-inflammatory drugs has led to the formation and isolation of trinuclear iron(III) complexes, while in the presence of the nitrogen-donors 2,2'-bipyridine or pyridine tetranuclear iron(III) complexes were derived. The five resultant complexes were characterized by diverse techniques (including infrared, electronic and Mössbauer spectroscopy) and their crystal structures were determined by single-crystal X-ray crystallography. These complexes are the first structurally characterized Fe(III)-fenamato complexes. The complexes were evaluated for their ability to scavenge in vitro free radicals such as hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid). The in vitro binding affinity of the complexes to calf-thymus (CT) DNA was examined and their interaction with serum albumins was also investigated. In total, the complexes present promising activity against the radicals tested, and they may bind tightly to CT DNA possibly via intercalation and reversibly to serum albumins.
Collapse
Affiliation(s)
- Filitsa Dimiza
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Ag. Paraskevi, Attiki, Greece
| | - Athanasios N Papadopoulos
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
11
|
Nnabuike GG, Salunke-Gawali S, Patil AS, Butcher RJ, Lawal M, Bamigboye MO, Obaleye JA. Copper(II) and Nickel(II) complexes of the non-steroidal anti-inflammatory drug indomethacin containing aromatic chelating N,N-donor ligand: Synthesis and structural studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Gacki M, Kafarska K, Pietrzak A, Szczesio M, Korona-Głowniak I, Wolf WM. Transition Metal Complexes with Flufenamic Acid for Pharmaceutical Applications-A Novel Three-Centered Coordination Polymer of Mn(II) Flufenamate. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13173705. [PMID: 32825746 PMCID: PMC7503579 DOI: 10.3390/ma13173705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Five complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with non-steroidal anti-inflammatory drug, flufenamic acid were synthesized: (1) [Mn3(fluf)6EtOH)(H2O)]·3EtOH; (2) [Co(fluf)2(EtOH)(H2O)]·H2O; (3) [Ni(fluf)2(EtOH)(H2O)]·H2O; (4) [Cu(fluf)2·H2O]; (5) [Zn(fluf)2·H2O]. All complexes were characterized by elemental analysis (EA), flame atomic absorption spectrometry (FAAS), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The crystal structure of 1 was determined by the single crystal X-ray diffraction technique. It crystallizes in the triclinic space group P with three independent Mn(II) cations, six coordinated flufenamato ligands augmented with water and ethanol molecules in the inner coordination sphere. In this crystal, manganese atoms are multiplied by symmetry and form infinite, polymeric chains which extend along the [001] dimension. The Hirshfeld Surface analysis revealed changes in interaction assemblies around all metal centers. The antioxidant and antimicrobial activities were established for all complexes and free ligand for comparison. All compounds exhibit good or moderate bioactivity against Gram-positive bacteria and yeasts.
Collapse
Affiliation(s)
- Michał Gacki
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Karolina Kafarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Anna Pietrzak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20–093 Lublin, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90–924 Lodz, Poland; (K.K.); (A.P.); (M.S.); (W.M.W.)
| |
Collapse
|
13
|
Two isostructural Co(II) flufenamato and niflumato complexes with bathocuproine: Analogues with a different cytotoxic activity. J Inorg Biochem 2020; 210:111160. [PMID: 32717439 DOI: 10.1016/j.jinorgbio.2020.111160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 01/26/2023]
Abstract
Two novel Co(II) fenamato complexes containing bathocuproine (bcp), namely [Co(bcp)(flu)2] (1) and [Co(bcp)(nif)2] (2) (flu = flufenamato, nif = niflumato) were synthesized and characterized by elemental analysis, single-crystal X-ray structure analysis as well as absorption and fluorescence spectroscopy. Investigation of their molecular structure revealed that both complexes are isostructural and form analogous complex molecules, with a Co(II) atom hexacoordinated by two nitrogen atoms of bcp and four oxygen atoms of two chelate bonded flu (1) and nif (2) ligands in a distorted octahedral arrangement. Surprisingly, the results of cytotoxicity experiments on four cancer cell lines (HeLa, HT-29, PC-3 and MCF-7) have revealed that despite similar structure of the complexes, the nif complex exhibits significantly higher activity, being the most effective against the PC-3 cell line (IC50 (MTT) = 6.11 ± 1.95 μM). Further studies performed on PC-3 cell line have shown that the mechanism of the cytotoxic action of nif complex (2) might involve activation of autophagic processes and apoptosis, while for its flu analogue (1) apoptosis was detected.
Collapse
|
14
|
Dimiza F, Lazou M, Papadopoulos AN, Hatzidimitriou AG, Psomas G. Manganese(II) coordination compounds of carboxylate non-steroidal anti-inflammatory drugs. J Inorg Biochem 2020; 203:110906. [DOI: 10.1016/j.jinorgbio.2019.110906] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
|
15
|
Vajedi FS, Dehghani H. A high-sensitive electrochemical DNA biosensor based on a novel ZnAl/layered double hydroxide modified cobalt ferrite-graphene oxide nanocomposite electrophoretically deposited onto FTO substrate for electroanalytical studies of etoposide. Talanta 2020; 208:120444. [DOI: 10.1016/j.talanta.2019.120444] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022]
|
16
|
Jozefíková F, Perontsis S, Šimunková M, Barbieriková Z, Švorc L, Valko M, Psomas G, Moncol’ J. Novel copper(ii) complexes with fenamates and isonicotinamide: structure and properties, and interactions with DNA and serum albumin. NEW J CHEM 2020. [DOI: 10.1039/d0nj02007a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactions of non-steroidal anti-inflammatory drugs tolfenamic, meclofenamic, mefenamic, clonixic and niflumic acids with isonicotinamide and copper(ii) acetate resulted in the formation of five novel mixed-ligand Cu(ii) coordination compounds.
Collapse
Affiliation(s)
- Flóra Jozefíková
- Department of Inorganic Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- Bratislava
- Slovakia
| | - Spyros Perontsis
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Miriama Šimunková
- Department of Physical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- Bratislava
- Slovakia
| | - Zuzana Barbieriková
- Department of Physical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- Bratislava
- Slovakia
| | - L’ubomír Švorc
- Department of Analytical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- Bratislava
- Slovakia
| | - Marian Valko
- Department of Physical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- Bratislava
- Slovakia
| | - George Psomas
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Ján Moncol’
- Department of Inorganic Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- Bratislava
- Slovakia
| |
Collapse
|
17
|
Lukov VV, Tsaturyan AA, Tupolova YP, Popov LD, Shcherbakov IN, Lebedev VE, Askalepova OI, Lastovina TA, Lazarenko VA, Khustalev VN, Poler JC. Theoretical and experimental study of the coordination ability of 4,6-dimethylpyrimidinylhydrazone diacetylmonooxime towards Ni( ii), Mn( ii), Fe( iii) and Co( iii) ions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05200c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The complexing ability of diacethylmonooxime 4,6-dimethylpyrimidylhydrazone ligand with Ni(ii), Mn(ii), Fe(iii) and Co(iii) salts have been studied.
Collapse
Affiliation(s)
- Vladimir V. Lukov
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | - Arshak A. Tsaturyan
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | - Yulia P. Tupolova
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | - Leonid D. Popov
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | | | | | | | | | | | - Victor N. Khustalev
- Inorganic Chemistry Department
- Peoples’ Friendship University of Russia
- Moscow
- Russia
| | - Jordan C. Poler
- Department of Chemistry
- University of North Carolina at Charlotte
- 28223 Charlotte
- USA
| |
Collapse
|
18
|
Biological activity of two novel zinc(II) complexes with NSAID mefenamic acid. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Ansari SS, Yousuf I, Arjmand F, Siddiqi MK, Naqvi S. Exploring the intermolecular interactions and contrasting binding of flufenamic acid with hemoglobin and lysozyme: A biophysical and docking insight. Int J Biol Macromol 2018; 116:1105-1118. [DOI: 10.1016/j.ijbiomac.2018.05.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
|
20
|
Smolková R, Zeleňák V, Gyepes R, Sabolová D, Imrichová N, Hudecová D, Smolko L. Synthesis, characterization, DNA binding, topoisomerase I inhibition and antimicrobial activity of four novel zinc(II) fenamates. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.11.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Perontsis S, Tialiou A, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Nickel(II)-indomethacin mixed-ligand complexes: Synthesis, characterization, antioxidant activity and interaction with DNA and albumins. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Novel Zn(II) complexes with non-steroidal anti-inflammatory ligand, flufenamic acid: Characterization, topoisomerase I inhibition activity, DNA and HSA binding studies. J Inorg Biochem 2017; 177:143-158. [DOI: 10.1016/j.jinorgbio.2017.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/17/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023]
|
23
|
Complexes of aminobenzoic acids: A comprehensive review concerning synthesis, physical chemistry, structure and application. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant. Talanta 2017; 178:1033-1039. [PMID: 29136793 DOI: 10.1016/j.talanta.2017.08.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 01/30/2023]
Abstract
The aim of this work is to find out the effect of antioxidant onto the interaction of DNA-anticancer drug, daunorubicin. Daunorubicin (DNR) is an anti-cancer drug which is used for the treatment of certain cancers including the treatment of leukemia. The treatments of patients, who suffer from cancer, become generally complicated if they take some antioxidant-containing supplement during chemotherapy. In this study, the interaction performance between DNR and DNA was investigated both in the presence and absence of antioxidant, caffeic acid, as the first time in the literature. Interaction performances were evaluated by observing both guanine (1.0V) and DNR (0.5V) oxidation signal in the same potential window.
Collapse
|
25
|
Beheshti A, Hashemi F, Behavndi F, Zahedi M, Kolahi M, Motamedi H, Mayer P. Synthesis, structural characterization, QSAR and docking studies of a new binuclear nickel (II) complex based on the flexible tetradentate N-donor ligand as a potent antibacterial and anticancer agent. Int J Biol Macromol 2017; 104:1107-1123. [PMID: 28663150 DOI: 10.1016/j.ijbiomac.2017.06.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
A new nickel (II)complex namely [Ni2(Lt)Cl4] derived from the NiCl2.6H2O and 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane (Lt) has been synthesized and fully characterized by the single crystal X-ray diffraction, elemental analysis, FT-IR, UV-vis, density functional theory (DFT) calculations, antibacterial and anticancer activities. In the title complex, each of the Ni(II) atoms is tetrahedrally coordinated by two N atoms from one of the chelating bidentate bis(3,5-dimethylpyrazolyl)methane units of the Lt ligand and two Cl as terminal ligands. The neighboring [Ni2(Lt)Cl4] molecules are linked together by the intermolecular CH⋯Cl hydrogen bonds to generate a 1D chain structure. The chains are further stabilized by the intermolecular CH⋯π interactions to form a two-dimensional non-covalent bonded structure. The antibacterial activity of the free Lt ligand and its Ni (II) complex shows that the ability of these compounds to inhibit growth of the tested bacteria increase from the Lt to binuclear nickel (II) complex. Scanning probe microscopy (SPM) study of the treated B. subtilis and E. coli bacteria was implemented to understand the structural changes caused by the interactions between the nickel (II) complex and the target bacteria. The cytotoxicity test of the Lt ligand and its complex was evaluated against the human carcinoma cell line (Caco-2) using the MTT assay. The results indicate that the Lt ligand and its complex display cytotoxicity against Caco-2 with the IC50 values of 36.29μM and 12.97μM, respectively. Therefore, the complex can be nominated as a potential anticancer agent. Molecular docking investigations on the five standard antibiotic, five standard anticancer drugs, free Lt ligand, title complex and twelve receptors were performed by Autodock vina function. The results of docking and DFT calculations are in line with the in vitro data obtained via the antibacterial and anticancer activity of Lt ligand and its made-complex.
Collapse
Affiliation(s)
- Azizolla Beheshti
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Faezeh Hashemi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fatemeh Behavndi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mansour Zahedi
- Department of Chemistry, Faculty of Chemistry, Shahid Beheshti University, G. C. Tehran, 19839, Evin, P.O. Box 19395-4716, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Motamedi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peter Mayer
- Department Chemie Butenandtstr, LMU München University, München, Germany
| |
Collapse
|
26
|
Cao H, Yi Y. Study on the interaction of chromate with bovine serum albumin by spectroscopic method. Biometals 2017; 30:529-539. [PMID: 28523598 DOI: 10.1007/s10534-017-0022-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster's non-radiative energy transfer theory. The results of UV-Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.
Collapse
Affiliation(s)
- Hongguang Cao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanli Yi
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
27
|
Totta X, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Nickel(ii)–naproxen mixed-ligand complexes: synthesis, structure, antioxidant activity and interaction with albumins and calf-thymus DNA. NEW J CHEM 2017. [DOI: 10.1039/c7nj00257b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six novel nickel(ii)–naproxen complexes exhibit selective radical scavenging activity, bind tightly to albumins and are DNA-intercalators.
Collapse
Affiliation(s)
- Xanthippi Totta
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Antonios G. Hatzidimitriou
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Athanasios N. Papadopoulos
- Department of Nutrition and Dietetics
- Faculty of Food Technology and Nutrition
- Alexandrion Technological Educational Institution
- Thessaloniki
- Greece
| | - George Psomas
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| |
Collapse
|