1
|
Deolka S, Govindarajan R, Khaskin E, Vasylevskyi S, Bahri J, Fayzullin RR, Roy MC, Khusnutdinova JR. Oxygen transfer reactivity mediated by nickel perfluoroalkyl complexes using molecular oxygen as a terminal oxidant. Chem Sci 2023; 14:7026-7035. [PMID: 37389265 PMCID: PMC10306096 DOI: 10.1039/d3sc01861j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel perfluoroethyl and perfluoropropyl complexes supported by naphthyridine-type ligands show drastically different aerobic reactivity from their trifluoromethyl analogs resulting in facile oxygen transfer to perfluoroalkyl groups or oxygenation of external organic substrates (phosphines, sulfides, alkenes and alcohols) using O2 or air as a terminal oxidant. Such mild aerobic oxygenation occurs through the formation of spectroscopically detected transient high-valent NiIII and structurally characterized mixed-valent NiII-NiIV intermediates and radical intermediates, resembling O2 activation reported for some Pd dialkyl complexes. This reactivity is in contrast with the aerobic oxidation of naphthyridine-based Ni(CF3)2 complexes resulting in the formation of a stable NiIII product, which is attributed to the effect of greater steric congestion imposed by longer perfluoroalkyl chains.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - R Govindarajan
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Janet Bahri
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
2
|
A thiomethyl-substituted imidazolyl imine functionalized copper(II) complex: synthesis, structural characterization, phenoxazinone synthase mimics and biological activities. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Krešáková L, Miňo A, Holub M, Kuchár J, Werner A, Tomás M, Čižmár E, Falvello LR, Černák J. Heteroleptic complexes of Ni(II) with 2,2′-bipyridine and benzoato ligands. Magnetic properties of [Ni(bpy)(Bz)2]. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Biological Inspirations: Iron Complexes Mimicking the Catechol Dioxygenases. MATERIALS 2021; 14:ma14123250. [PMID: 34204660 PMCID: PMC8231159 DOI: 10.3390/ma14123250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
Within the broad group of Fe non-heme oxidases, our attention was focused on the catechol 1,2- and 2,3-dioxygenases, which catalyze the oxidative cleavage of aromatic rings. A large group of Fe complexes with N/O ligands, ranging from N3 to N2O2S, was developed to mimic the activity of these enzymes. The Fe complexes discussed in this work can mimic the intradiol/extradiol catechol dioxygenase reaction mechanism. Electronic effects of the substituents in the ligand affect the Lewis acidity of the Fe center, increasing the ability to activate dioxygen and enhancing the catalytic activity of the discussed biomimetic complexes. The ligand architecture, the geometric isomers of the complexes, and the substituent steric effects significantly affect the ability to bind the substrate in a monodentate and bidentate manner. The substrate binding mode determines the preferred mechanism and, consequently, the main conversion products. The preferred mechanism of action can also be affected by the solvents and their ability to form the stable complexes with the Fe center. The electrostatic interactions of micellar media, similar to SDS, also control the intradiol/extradiol mechanisms of the catechol conversion by discussed biomimetics.
Collapse
|
5
|
Gomes MAGB, Fernandes C, Gahan LR, Schenk G, Horn A. Recent Advances in Heterogeneous Catalytic Systems Containing Metal Ions for Phosphate Ester Hydrolysis. Chemistry 2021; 27:877-887. [PMID: 32659052 DOI: 10.1002/chem.202002333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Organophosphates are a class of organic compounds that are important for living organisms, forming the building blocks for DNA, RNA, and some essential cofactors. Furthermore, non-natural organophosphates are widely used in industrial applications, including as pesticides; in laundry detergents; and, unfortunately, as chemical weapons agents. In some cases, the natural degradation of organophosphates can take thousands of years; this longevity creates problems associated with handling and the storage of waste generated by such phosphate esters, in particular. Efforts to develop new catalysts for the cleavage of phosphate esters have progressed in recent decades, mainly in the area of homogeneous catalysis. In contrast, the development of heterogeneous catalysts for the hydrolysis of organophosphates has not been as prominent. Herein, examples of heterogeneous systems are described and the importance of the development of heterogeneous catalysts applicable to organophosphate hydrolysis is highlighted, shedding light on recent advances related to different solid matrices that have been employed.
Collapse
Affiliation(s)
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
6
|
Kim S, Yun J, Yoo H, Kim S, Kim HM, Lee HS. Metal-Mediated Protein Assembly Using a Genetically Incorporated Metal-Chelating Amino Acid. Biomacromolecules 2020; 21:5021-5028. [PMID: 33253537 DOI: 10.1021/acs.biomac.0c01194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many natural proteins function in oligomeric forms, which are critical for their sophisticated functions. The construction of protein assemblies has great potential for biosensors, enzyme catalysis, and biomedical applications. In designing protein assemblies, a critical process is to create protein-protein interaction (PPI) networks at defined sites of a target protein. Although a few methods are available for this purpose, most of them are dependent on existing PPIs of natural proteins to some extent. In this report, a metal-chelating amino acid, 2,2'-bipyridylalanine (BPA), was genetically introduced into defined sites of a monomeric protein and used to form protein oligomers. Depending on the number of BPAs introduced into the protein and the species of metal ions (Ni2+ and Cu2+), dimers or oligomers with different oligomerization patterns were formed by complexation with a metal ion. Oligomer sizes could also be controlled by incorporating two BPAs at different locations with varied angles to the center of the protein. When three BPAs were introduced, the monomeric protein formed a large complex with Ni2+. In addition, when Cu2+ was used for complex formation with the protein containing two BPAs, a linear complex was formed. The method proposed in this report is technically simple and generally applicable to various proteins with interesting functions. Therefore, this method would be useful for the design and construction of functional protein assemblies.
Collapse
Affiliation(s)
- Sanggil Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| | - Jeongwon Yun
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunjung Yoo
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| | - Sooin Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Biomolecular & Cellular Structure, Institution for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| |
Collapse
|
7
|
C H functionalization of alkanes, bactericidal and antiproliferative studies of a gold(III)-phenanthroline complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mukherjee S, Biswas B. Organo‐Cascade Catalysis: Application of Merged Iminium‐Enamine Activation Technique and Related Cascade Reactivities. ChemistrySelect 2020. [DOI: 10.1002/slct.202003070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shirshendu Mukherjee
- Department of Chemistry Hooghly Mohsin Govt. College Hooghly 712101, West Bengal India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Siliguri Darjeeling 734013, West Bengal India
| |
Collapse
|
9
|
Muñoz-Patiño N, Sánchez-Eguía BN, Araiza-Olivera D, Flores-Alamo M, Hernández-Ortega S, Martínez-Otero D, Castillo I. Synthesis, structure, and biological activity of bis(benzimidazole)amino thio- and selenoether nickel complexes. J Inorg Biochem 2020; 211:111198. [PMID: 32801056 DOI: 10.1016/j.jinorgbio.2020.111198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022]
Abstract
Four new nickel (II) complexes with bis(benzimidazole)thio- and selenoether-based ligands have been synthesized and characterized in the solid state by elemental analysis, IR, magnetic susceptibility and X-ray crystallography, and in solution by FAB+ mass spectrometry, UV-vis spectroscopy and cyclic voltammetry. Single-crystal X-ray diffraction analysis of the compounds revealed octahedral geometries for all nickel centers. Three of the four complexes are dimers with chloride bridges between the two Ni(II) ions. However, in solution all complexes have a monomeric formulation, based on mass spectrometry and osmometry measurements. The complexes were also screened for their cytotoxic activity on human cell lines (HeLa, SK-LU-1 and HEK-293), and compared with a related Cu(II) complex.
Collapse
Affiliation(s)
- Natalia Muñoz-Patiño
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510, Mexico
| | - Brenda N Sánchez-Eguía
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510, Mexico
| | - Daniela Araiza-Olivera
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510, Mexico
| | - Simón Hernández-Ortega
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510, Mexico
| | - Diego Martínez-Otero
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, 50200, Toluca, Estado de México, Mexico
| | - Ivan Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510, Mexico.
| |
Collapse
|
10
|
Kumar Pal C, Mahato S, Joshi M, Paul S, Roy Choudhury A, Biswas B. Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Du J, Qi S, Chen J, Yang Y, Fan T, Zhang P, Zhuo S, Zhu C. Fabrication of highly active phosphatase-like fluorescent cerium-doped carbon dots for in situ monitoring the hydrolysis of phosphate diesters. RSC Adv 2020; 10:41551-41559. [PMID: 35516543 PMCID: PMC9057792 DOI: 10.1039/d0ra07429b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrolytic cleavage of BNPP was catalyzed and monitored by the fluorescent CeCDs.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Juan Chen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Tingting Fan
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ping Zhang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
12
|
Mudi PK, Mahato RK, Joshi M, Paul S, Choudhury AR, Biswas B. Synthesis and structural characterization of a linkage isomer to a mononuclear Nickel(II) complex: Experimental and computational depiction of phosphoesterase efficiency. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Pal CK, Mahato S, Yadav HR, Shit M, Choudhury AR, Biswas B. Bio-mimetic of catecholase and phosphatase activity by a tetra-iron(III) cluster. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Carbinol mediated clusterization of Nickel(II) ions in a Schiff base backbone: Structural & solution properties, phosphoester cleavage activity including theoretical support. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
The Early Years of 2,2'-Bipyridine-A Ligand in Its Own Lifetime. Molecules 2019; 24:molecules24213951. [PMID: 31683694 PMCID: PMC6864536 DOI: 10.3390/molecules24213951] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
The first fifty years of the chemistry of 2,2′-bipyridine are reviewed from its first discovery in 1888 to the outbreak of the second global conflict in 1939. The coordination chemistry and analytical applications are described and placed in the context of the increasingly sophisticated methods of characterization which became available to the chemist in this time period. Many of the “simple” complexes of 2,2′-bipyridine reported in the early literature have been subsequently shown to have more complex structures.
Collapse
|
16
|
Dey D, Patra M, Al-Hunaiti A, Yadav HR, Al-mherat A, Arar S, Maji M, Choudhury AR, Biswas B. Synthesis, structural characterization and C H activation property of a tetra-iron(III) cluster. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
De A, Sahu A, Paul S, Joshi M, Choudhury AR, Biswas B. Structural and luminescent properties of a new 1D Cadmium(II) coordination polymer: A combined effort with experiment & theory. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Chen L, Dulaney HA, Wilkins BO, Farmer S, Zhang Y, Fronczek FR, Jurss JW. High-spin enforcement in first-row metal complexes of a constrained polyaromatic ligand: synthesis, structure, and properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj02072h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination chemistry of a rigid tetradentate polypyridyl ligand has been developed with first-row transition metals Mn(ii), Fe(ii), Co(ii), Ni(ii), and Zn(ii).
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Hunter A. Dulaney
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | | | - Sarah Farmer
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Yanbing Zhang
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | | | - Jonah W. Jurss
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| |
Collapse
|
19
|
Garai M, Dey D, Yadav HR, Choudhury AR, Maji M, Biswas B. Catalytic Fate of Two Copper Complexes towards Phenoxazinone Synthase and Catechol Dioxygenase Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201702113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mamoni Garai
- Department of Chemistry; Raghunathpur College; Purulia 723 133,West Bengal India
| | - Dhananjay Dey
- Department of Chemistry; Raghunathpur College; Purulia 723 133,West Bengal India
| | - Hare Ram Yadav
- Department of Chemical Sciences; Indian Institute of Science Education and Research, S.A.S. Nagar, Sector 81, Manauli PO; Mohali 140 306 India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences; Indian Institute of Science Education and Research, S.A.S. Nagar, Sector 81, Manauli PO; Mohali 140 306 India
| | - Milan Maji
- Department of Chemistry; National Institute of Technology; Durgapur 713209, West Bengal India
| | - Bhaskar Biswas
- Department of Chemistry; Raghunathpur College; Purulia 723 133,West Bengal India
- Present Address: Department of Chemistry; Surendranath College; 24/2 M.G. Road, Kolkata 700009, West Bengal India
| |
Collapse
|