1
|
Ibrahim ABM, Williem ES, Elkhalik S, Villinger A, Abbas SM. Structural investigations and antibacterial, antifungal and anticancer studies on zinc salicylaldimine complexes. Future Med Chem 2024; 16:1551-1560. [PMID: 38899770 PMCID: PMC11370977 DOI: 10.1080/17568919.2024.2363672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Aim: Zinc salicylaldimines may act as multidrug agents.Results: Three zinc salicylaldimines C1-C3 and respective ligands HL1-HL3 were examined for antimicrobial/anticancer drug action and C3 was structurally analyzed (tetrahedral, triclinic). Against two fungi, C1 inhibited Candida albicans with 12 mm (21 mm for amphotericin B). Among four bacteria, two ligands inhibited Staphylococcus aureus and Escherichia coli (9-10 mm), but the complexes inhibited all bacteria with 10-14 mm (21-26 mm for ampicillin). The half-maximal inhibitory concentrations for the ligands, complexes and doxorubicin were 195.5-310.7, 22.18-70.05 and 9.66 μM against cancerous MCF-7 cells and 186.4-199.9, 14.95-18.87 and 36.42 μM against normal BHK cells.Conclusion: The complexation produced pronounced enhancement in the ligand antimicrobial/anticancer activities, despite these activities are moderate comparing with standards.
Collapse
Affiliation(s)
- Ahmed BM Ibrahim
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ereny S Williem
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - S Abd Elkhalik
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - SM Abbas
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
2
|
Jorge J, Del Pino Santos KF, Timóteo F, Vasconcelos RRP, Ayala Cáceres OI, Granja IJA, de Souza DM, Frizon TEA, Di Vaccari Botteselle G, Braga AL, Saba S, Rashid HU, Rafique J. Recent Advances on the Antimicrobial Activities of Schiff Bases and their Metal Complexes: An Updated Overview. Curr Med Chem 2024; 31:2330-2344. [PMID: 36823995 DOI: 10.2174/0929867330666230224092830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 02/25/2023]
Abstract
Schiff bases represent a valuable class of organic compounds, synthesized via condensation of primary amines with ketones or aldehydes. They are renowned for possessing innumerable applications in agricultural chemistry, organic synthesis, chemical and biological sensing, coating, polymer and resin industries, catalysis, coordination chemistry, and drug designing. Schiff bases contain imine or azomethine (-C=N-) functional groups which are important pharmacophores for the design and synthesis of lead bioactive compounds. In medicinal chemistry, Schiff bases have attracted immense attention due to their diverse biological activities. This review aims to encompass the recent developments on the antimicrobial activities of Schiff bases. The article summarizes the antibacterial, antifungal, antiviral, antimalarial, and antileishmanial activities of Schiff bases reported since 2011.
Collapse
Affiliation(s)
- Juliana Jorge
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | | | - Fernanda Timóteo
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | | | | | | | - David Monteiro de Souza
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | - Tiago Elias Allievi Frizon
- Department of Energy and Sustainability, Universidade Federal de Santa Catarina - UFSC, Campus Araranguá, Araranguá, 88905-120, SC, Brazil
| | | | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, 74690-900, GO, Brazil
| | - Haroon Ur Rashid
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, 74690-900, GO, Brazil
| |
Collapse
|
3
|
Williem ES, Ibrahim ABM, Elkhalik SA, Marek J, Abbas SM. In vitro biological activity of cobalt(II) complexes with salicylaldimine ligands in microbial and cancer cells. Future Med Chem 2023; 15:1415-1426. [PMID: 37584209 DOI: 10.4155/fmc-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Background: More studies using cobalt complexes as drugs are needed. Results: The drug action of two cobalt salicylaldimines was determined. The complexes and amphotericin B (20 mg/ml) inhibited Candida albicans at 9-15 and 21 mm. This concentration of both ligands inhibited Staphylococcus aureus at 10 mm and one ligand inhibited Escherichia coli at 9 mm, but the complexes and ampicillin inhibited four bacteria at 9-20 and 21-26 mm. The ligands were inactive against cancer and normal cells, but the complexes and doxorubicin provided IC50 values of 28.18-54.19 and 9.66 μM against MCF-7 cells and 15.76-20.49 and 36.42 μM against BHK cells. Conclusion: The ligands' activity was much improved by complexation, although they remained substandard.
Collapse
Affiliation(s)
- Ereny S Williem
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Ahmed B M Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - S Abd Elkhalik
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Jaromír Marek
- Core Facility Biomolecular Interactions & Crystallography, CEITEC MU, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S M Abbas
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
4
|
Nugrahani I, Susanti E, Adawiyah T, Santosa S, Laksana AN. Non-Covalent Reactions Supporting Antiviral Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249051. [PMID: 36558183 PMCID: PMC9783875 DOI: 10.3390/molecules27249051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Viruses are the current big enemy of the world's healthcare systems. As the small infector causes various deadly diseases, from influenza and HIV to COVID-19, the virus continues to evolve from one type to its mutants. Therefore, the development of antivirals demands tremendous attention and resources for drug researchers around the world. Active pharmaceutical ingredients (API) development includes discovering new drug compounds and developing existing ones. However, to innovate a new antiviral takes a very long time to test its safety and effectiveness, from structure modeling to synthesis, and then requires various stages of clinical trials. Meanwhile, developing the existing API can be more efficient because it reduces many development stages. One approach in this effort is to modify the solid structures to improve their physicochemical properties and enhance their activity. This review discusses antiviral multicomponent systems under the research phase and has been marketed. The discussion includes the types of antivirals, their counterpart compound, screening, manufacturing methods, multicomponent systems yielded, characterization methods, physicochemical properties, and their effects on their pharmacological activities. It is hoped that the opportunities and challenges of solid antiviral drug modifications can be drawn in this review as important information for further antiviral development.
Collapse
|
5
|
Gašparová M, Kabaňová N, Tokár K, Végh D, Tokárová Z. Novel type of azomethine with combined effects of thiophene cores and vicinal cyano groups. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Pang X, Tao Y, Zhang J, Chen H, Sun A, Ren G, Yang W, Pan Q. New Chrysin-based co-crystals: synthesis, characterization and dissolution studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Prototropic tautomerism of (E)-N-((4-((2-hydroxy-5-methoxybenzylidene) amino)phenyl)sulfonyl)acetamide and its coordination abilities towards Ru, Rh, and Ir trivalent metal ions. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Unravelling the Synthetic Mimic, Spectroscopic Insights, and Supramolecular Crystal Engineering of an Innovative Heteronuclear Pb(II)-Salen Cocrystal: An Integrated DFT, QTAIM/NCI Plot, NLO, Molecular Docking/PLIP, and Antibacterial Appraisal. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Ahmed AAM, Mekky AEM, Sanad SMH. Effective synthesis of new benzo-fused macrocyclic and heteromacrocyclic bis(Schiff bases). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02409-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
El-Lateef HMA, Khalaf MM, Shehata MR, Abu-Dief AM. Fabrication, DFT Calculation, and Molecular Docking of Two Fe(III) Imine Chelates as Anti-COVID-19 and Pharmaceutical Drug Candidate. Int J Mol Sci 2022; 23:ijms23073994. [PMID: 35409353 PMCID: PMC8999679 DOI: 10.3390/ijms23073994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Two tetradentate dibasic chelating Schiff base iron (III) chelates were prepared from the reaction of 2,2′-((1E,1′E)-(1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis(4-bromophenol) (PDBS) and 2,2′-((1E,1′E)-((4-chloro-1,2-phenylene)bis(azanylylidene))-bis(methanylylidene))bis(4-bromophenol) (CPBS) with Fe3+ ions. The prepared complexes were fully characterized with spectral and physicochemical tools such as IR, NMR, CHN analysis, TGA, UV-visible spectra, and magnetic moment measurements. Moreover, geometry optimizations for the synthesized ligands and complexes were conducted using the Gaussian09 program through the DFT approach, to find the best structures and key parameters. The prepared compounds were tested as antimicrobial agents against selected strains of bacteria and fungi. The results suggests that the CPBSFe complex has the highest activity, which is close to the reference. An MTT assay was used to screen the newly synthesized compounds against a variety of cell lines, including colon cancer cells, hepatic cellular carcinoma cells, and breast carcinoma cells. The results are expressed by IC50 value, in which the 48 µg/mL value of the CPBSFe complex indicates its success as a potential anticancer agent. The antioxidant behavior of the two imine chelates was studied by DPPH assay. All the tested imine complexes show potent antioxidant activity compared to the standard Vitamin C. Furthermore, the in vitro assay and the mechanism of binding and interaction efficiency of the tested samples with the receptor of COVID-19 core protease viral protein (PDB ID: 6lu7) and the receptor of Gram-negative bacteria (Escherichia coli, PDB ID: 1fj4) were investigated using molecular docking experiments.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Correspondence: (H.M.A.E.-L.); (A.M.A.-D.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Mohamed R. Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza P.O. Box 12613, Egypt;
| | - Ahmed M. Abu-Dief
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia
- Correspondence: (H.M.A.E.-L.); (A.M.A.-D.)
| |
Collapse
|
11
|
Synthesis and characterization of a pyrene-based Schiff base and its oligomer: Investigation of fluorescent Cr3+ probe. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Han XJ, Li RY, Yue YN, Zhang Y, Dong WK. Studying anion-dependent paradoxically fluorescent Cu(II) complexes bearing a pyridine-decorated tetradentate half-salamo-like ligand. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Synthesis, Characterization, and In Vitro Cytotoxicity of Unsymmetrical Tetradentate Schiff Base Cu(II) and Fe(III) Complexes. Bioinorg Chem Appl 2021; 2021:6696344. [PMID: 34035799 PMCID: PMC8118743 DOI: 10.1155/2021/6696344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
Unsymmetrical tetradentate Schiff base Fe(III) and Cu(II) complexes were prepared by the coordination of some unsymmetrical tetradentate Schiff base ligands with CuCl2·2H2O or FeCl3·6H2O. The obtained complexes were characterized by ESI-MS, IR, and UV-Vis. The spectroscopic data with typical signals are in agreement with the suggested molecular formulae of the complexes. Their cyclic voltammetric studies in acetonitrile solutions showed that the Cu(II)/Cu(I) and Fe(III)/Fe(II) reduction processes are at (−)1.882–(−) 1.782 V and at (−) 1.317–(−) 1.164 V, respectively. The in vitro cytotoxicity of obtained complexes was screened for KB and Hep-G2 human cancer cell lines. The results showed that almost unsymmetrical tetradentate Schiff base complexes have good cytotoxicity. The synthetic complexes bearing the unsymmetrical tetradentate Schiff base ligands with different substituted groups in the salicyl ring indicate different cytotoxicity. The obtained Fe(III) complexes are more cytotoxic than Cu(II) complexes and relative unsymmetric Schiff base ligands.
Collapse
|
14
|
Wang JF, Li RY, Li P, Dong WK. Exploring coordination behaviors, structural characterizations and theoretical calculations of structurally different Cu(II), Co(II) and Ni(II) emissive complexes constructed from a salamo-based ligand and 4,4′-bipy. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120247] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Feng T, Wang JF, Li LL, Zhang Y, Dong XY. INSIGHT INTO FLUORESCENT PROPERTIES, DFT
AND HIRSHFELD ANALYSES OF A NEWLY SYNTHESIZED AND STRUCTURALLY NOVEL TRINUCLEAR COPPER(II) SALAMO-BASED COMPLEX INVOLVING PHENOXO-O BRIDGED COORDINATION. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Celedon S, Roisnel T, Carrillo D, Ledoux-Rak I, Hamon JR, Manzur C. Transition metal(II) complexes featuring push-pull dianionic Schiff base ligands: synthesis, crystal structure, electrochemical, and NLO studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1827237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Salvador Celedon
- Laboratorio de Química Inorgánica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes, France
| | - David Carrillo
- Laboratorio de Química Inorgánica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabelle Ledoux-Rak
- Laboratoire Lumière, Matière et Interfaces, ENS Paris Saclay, FRE CNRS 2036, CentraleSupelec, Gif-sur-Yvette, France
| | - Jean-Rene Hamon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes, France
| | - Carolina Manzur
- Laboratorio de Química Inorgánica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
17
|
Golbedaghi R, Tabanez AM, Esmaeili S, Fausto R. Biological Applications of Macrocyclic Schiff Base Ligands and Their Metal Complexes: A Survey of the Literature (2005–2019). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reza Golbedaghi
- Chemistry Department Payame Noor University Tehran 19395‐4697 Iran
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Andreia M. Tabanez
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Somayeh Esmaeili
- Internal Medicine Department Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rui Fausto
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| |
Collapse
|
18
|
Miroslaw B. Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands. Int J Mol Sci 2020; 21:E3493. [PMID: 32429112 PMCID: PMC7278988 DOI: 10.3390/ijms21103493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118-119). However, there is still a vivid interest in coordination compounds based on imine ligands. The aim of this paper is to review the most recent concepts on construction of homo- and hetero-oligonuclear Schiff base coordination compounds narrowed down to the less frequently considered complexes of platinum group metals (PGM). The combination of SB and PGM in oligonuclear entities has several advantages over mononuclear or polynuclear species. Such complexes usually exhibit better electroluminescent, magnetic and/or catalytic properties than mononuclear ones due to intermetallic interactions and frequently have better solubility than polymers. Various construction strategies of oligodentate imine ligands for coordination of PGM are surveyed including simple imine ligands, non-innocent 1,2-diimines, chelating imine systems with additional N/O/S atoms, classic N2O2-compartmental Schiff bases and their modifications resulting in acyclic fused ligands, macrocycles such as calixsalens, metallohelical structures, nano-sized molecular wheels and hybrid materials incorporating mesoionic species. Co-crystallization and formation of metallophilic interactions to extend the mononuclear entities up to oligonuclear coordination species are also discussed.
Collapse
Affiliation(s)
- Barbara Miroslaw
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
19
|
Ooshall F, Golbedaghi R, Jamehbozorgi S. Selective and Sensitive Two New Macroacyclic Schiff base Fluorescent Turn‐Off Receptors for Fe
3+
, DFT Calculation and Their Antibacterial Activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Farkhondeh Ooshall
- Faculty of Science, Department of Chemistry, Arak BranchIslamic Azad University Arak Iran
| | - Reza Golbedaghi
- Chemistry DepartmentPayame Noor University 19395‐4697, Tehran Iran
| | - Saeed Jamehbozorgi
- Faculty of Science, Department of Chemistry, Hamedan BranchIslamic Azad University Hamedan Iran
| |
Collapse
|
20
|
Celedón S, Roisnel T, Artigas V, Fuentealba M, Carrillo D, Ledoux-Rak I, Hamon JR, Manzur C. Palladium( ii) complexes of tetradentate donor–acceptor Schiff base ligands: synthesis and spectral, structural, thermal and NLO properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj01982h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural and NLO behavior of push–pull palladium(ii) complexes of metallocenyl-containing asymmetric Schiff base ligands.
Collapse
Affiliation(s)
- Salvador Celedón
- Laboratorio de Química Inorgánica
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Avenida Universidad 330
| | - Thierry Roisnel
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Vania Artigas
- Laboratorio de Cristalografía
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Curauma
| | - Mauricio Fuentealba
- Laboratorio de Cristalografía
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Curauma
| | - David Carrillo
- Laboratorio de Química Inorgánica
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Avenida Universidad 330
| | - Isabelle Ledoux-Rak
- Laboratoire Lumière
- Matière et Interfaces
- FRE 2036 CNRS 8537
- ENS Paris Saclay
- Institut d’Alembert
| | - Jean-René Hamon
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Carolina Manzur
- Laboratorio de Química Inorgánica
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Avenida Universidad 330
| |
Collapse
|
21
|
Highly cis-1,4 selective polymerization of 1,3-butadiene with Co(II) complexes bearing N-aryl-phenanthrene-o-iminoquinones. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Hasanzadeh Esfahani M, Iranmanesh H, Beves JE, Kaur M, Jasinski JP, Behzad M. Crystal structures and antibacterial properties of Cu(II) complexes containing an unsymmetrical N2O Schiff base ligand and bidentate N-donor heterocyclic co-ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1643846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | - Manpreet Kaur
- Department of Chemistry, Keene State College, Keene, NH, USA
| | | | - Mahdi Behzad
- Department of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
23
|
Plyuta N, Kokozay V, Cauchy T, Avarvari N, Goreshnik E, Petrusenko S. Solvent Dependent Prototropic Tautomerism in a Schiff Base Derived from
o
‐Vanillin and 2‐Aminobenzylalcohol. ChemistrySelect 2019. [DOI: 10.1002/slct.201902118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nataliya Plyuta
- Department of Inorganic ChemistryTaras Shevchenko National University of Kyiv Volodymyrska str. 64/13 01601 Kyiv Ukraine
- MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Vladimir Kokozay
- Department of Inorganic ChemistryTaras Shevchenko National University of Kyiv Volodymyrska str. 64/13 01601 Kyiv Ukraine
| | - Thomas Cauchy
- MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Narcis Avarvari
- MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Evgeny Goreshnik
- Department of Inorganic Chemistry and TechnologyJozef Stefan Institute Jamova cesta 39 SI-1000 Ljubljana Slovenia
| | - Svitlana Petrusenko
- Department of Inorganic ChemistryTaras Shevchenko National University of Kyiv Volodymyrska str. 64/13 01601 Kyiv Ukraine
| |
Collapse
|
24
|
Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|