1
|
Joji J, Naik TSSK, Ramamurthy PC. Biomimetic Approaches for Detecting Lead in Water Contaminated by Perovskite Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3236-3248. [PMID: 39898501 DOI: 10.1021/acs.langmuir.4c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Perovskite-based solar cells (PSCs) have emerged as highly promising in photovoltaics. New techniques are being developed for enhancing the device's lifetime and performance. However, damaged or end-of-life lead-perovskite solar modules pose significant health and environmental risks due to the release of Pb2+ ions into the environment. This work developed an electrochemical detection of lead ions leached from degraded PSCs to address this issue. The biomimicking architecture of the sensing moiety was designed to replicate the interaction between lead ions and amino acids in various proteins, enabling more specific detection. Here, aminopropyl trimethoxysilane-functionalized metal-organic framework/ZIF-67 (ZIF-N) was used to detect lead, specifically in water leaked from lead-based PSCs. The ZIF-67-based sensing element, combined with a carbon paste electrode, exhibited a selective interaction with lead ions, allowing for the detection of lead in water as low as 60 ppb. This detection strategy relies on measuring changes in electronic properties using an electrochemical approach. Real-time lead detection in perovskite-contaminated water was successfully demonstrated using the differential pulse voltammetry technique, with ZIF-N as the sensing element.
Collapse
Affiliation(s)
- Jinu Joji
- Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - T S Sunil Kumar Naik
- Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Praveen C Ramamurthy
- Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Shanmugavel A, Rene ER, Balakrishnan SP, Krishnakumar N, Jose SP. Heavy metal ion sensing strategies using fluorophores for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 260:119544. [PMID: 38969312 DOI: 10.1016/j.envres.2024.119544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The main aim of this review is to provide a holistic summary of the latest advances within the research area focusing on the detection of heavy metal ion pollution, particularly the sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as good specificity, reversibility, and sensitivity. Further, this review also explores the advantages of various nanomaterials employed in sensing heavy metal ions. In this regard, exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems, and to identify the fate of heavy metal ions in the natural environment.
Collapse
Affiliation(s)
- Abinaya Shanmugavel
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands
| | | | | | - Sujin P Jose
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
3
|
Udhayakumari D. A Review of Nanotechnology-Enabled Fluorescent Chemosensors for Environmental Toxic Ion Detection. J Fluoresc 2024:10.1007/s10895-024-03793-8. [PMID: 38949752 DOI: 10.1007/s10895-024-03793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
This review examines the utilization of nanotechnology-based chemosensors for identifying environmental toxic ions. Over recent decades, the creation of nanoscale materials for applications in chemical sensing, biomedical, and biological analyses has emerged as a promising avenue. Nanomaterials play a vital role in improving the sensitivity and selectivity of chemosensors, thereby making them effective tools for monitoring and evaluating environmental contamination. This is due to their highly adjustable size- and shape-dependent chemical and physical properties. Nanomaterials possess distinct surface chemistry, thermal stability, high surface area, and large pore volume per unit mass, which can be harnessed for sensor development. The discussion encompasses different types of nanomaterials utilized in chemosensor design, LOD, their sensing mechanisms, and their efficacy in detecting specific toxic ions. Furthermore, the review explores the progress made, obstacles faced, and future prospects in this rapidly evolving field, highlighting the potential contributions of nanotechnology to the creation of robust sensing platforms for environmental monitoring.
Collapse
|
4
|
Liu X, Sun Y, Song H, Zhang W, Liu T, Chu Z, Gu X, Ma Z, Jin W. Nanomaterials-based electrochemical biosensors for diagnosis of COVID-19. Talanta 2024; 274:125994. [PMID: 38547841 DOI: 10.1016/j.talanta.2024.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Since the outbreak of corona virus disease 2019 (COVID-19), this pandemic has caused severe death and infection worldwide. Owing to its strong infectivity, long incubation period, and nonspecific symptoms, the early diagnosis is essential to reduce risk of the severe illness. The electrochemical biosensor, as a fast and sensitive technique for quantitative analysis of body fluids, has been widely studied to diagnose different biomarkers caused at different infective stages of COVID-19 virus (SARS-CoV-2). Recently, many reports have proved that nanomaterials with special architectures and size effects can effectively promote the biosensing performance on the COVID-19 diagnosis, there are few comprehensive summary reports yet. Therefore, in this review, we will pay efforts on recent progress of advanced nanomaterials-facilitated electrochemical biosensors for the COVID-19 detections. The process of SARS-CoV-2 infection in humans will be briefly described, as well as summarizing the types of sensors that should be designed for different infection processes. Emphasis will be supplied to various functional nanomaterials which dominate the biosensing performance for comparison, expecting to provide a rational guidance on the material selection of biosensor construction for people. Finally, we will conclude the perspective on the design of superior nanomaterials-based biosensors facing the unknown virus in future.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Yifan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Huaiyu Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Wei Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Xiaoping Gu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| |
Collapse
|
5
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
6
|
Kayani KF, Mohammad NN, Kader DA, Mohammed SJ, Shukur DA, Alshatteri AH, Al‐Jaf SH, Abdalkarim KA, Hassan HQ. Ratiometric Lanthanide Metal‐Organic Frameworks (MOFs) for Smartphone‐Assisted Visual Detection of Food Contaminants and Water: A Review. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2025]
Abstract
AbstractDeveloping a reliable portable biosensor is crucial for ensuring food safety and human health. This involves accurately detecting contaminants in food and water at their source. Smartphone cameras have recently become useful for capturing color or fluorescence changes that occur when a probe interacts with specific molecules on paper or in a chemical solution. Ratiometric designs, which self‐calibrate and minimize the impact of environmental changes, are gaining popularity. These designs rely on color changes or fluorescence shifts, which are easily assessable with smartphones. This overview highlights advances in ratiometric optical sensing using Metal‐organic frameworks (MOFs) with lanthanide components coupled with smartphones. These advancements allow contaminants in food and water to be visually identified. The article explains the principles, properties, and applications of color changes for visual detection in food safety. Using lanthanide metal‐organic frameworks with smartphones offers a potent method to detect contaminants, enhancing food safety and safeguarding human health.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Nian N. Mohammad
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Department of Medical Laboratory Science College of Science Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Dana A. Kader
- Department of Chemistry College of Education University of Sulaimani Old Campus 46001 Kurdistan Region Iraq E-mail: address
| | - Sewara J. Mohammed
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Anesthesia Department College of Health Sciences Cihan University Sulaimaniya Sulaimani 46001 Kurdistan Region Iraq
| | - Dana A. Shukur
- Department of Nanoscience and Applied Chemistry College of Science Charmo University Peshawa Street Chamchamal Sulaymaniyah 46023 Iraq
| | - Azad H. Alshatteri
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Sabah H. Al‐Jaf
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Karzan A. Abdalkarim
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Hanar Q. Hassan
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| |
Collapse
|
7
|
Deepika, Heena, Kaur M, Singh K, Malik AK. Novel SnO 2@Cu 3(BTC) 2 Composites as a Highly Efficient Photocatalyst and Fluorescent Sensor. J Fluoresc 2023; 33:2415-2429. [PMID: 37084064 DOI: 10.1007/s10895-023-03232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
A novel SnO2@Cu3(BTC)2 composite was synthesized using a quick and affordable bottom-up approach via impregnation of SnO2 nanoparticles into the porous Cu3(BTC)2 metal-organic framework (MOF). This composite material is characterized by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) spectra, scanning electron microscope (SEM) analysis, and energy-dispersive X-ray spectroscopy (EDS) analysis. SnO2@Cu3(BTC)2 degraded the methylene blue (MB) dye within 80 min under sunlight with a maximum degradation efficiency of 85.12%. This composite easily recyclable up to five cycles with the retention of its MB degradation efficiency. Moreover, SnO2@Cu3(BTC)2 can be also used efficiently for fast sensing of 2,4,6-trinitrophenol (TNP) in water with noticeable turn-off quenching response. Its limits of detection (LOD) for TNP was 2.82 µM with enhanced selectivity toward TNP (over other NACs) as verified by competitive nitro explosive tests. Density functional theory (DFT) calculations and spectral overlap were used to assess the sensing mechanism. This composite fluorescent sensing system for TNP are demonstrated to have high selectivity and sensitivity. Our findings imply that the prepared low cost SnO2@Cu3(BTC)2 composite can be used as a superior fluorescence sensor and photo catalyst for large scale industrial applications.
Collapse
Affiliation(s)
- Deepika
- Department of Chemistry, Punjabi University, Patiala-147 002, Punjab, India
| | - Heena
- GSSDGS Khalsa College, Patiala-147 001, Punjab, India
| | - Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala-147 002, Punjab, India
| | - Karamjit Singh
- Department of Physics, Punjabi University, Patiala-147 002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala-147 002, Punjab, India.
| |
Collapse
|
8
|
Palanisamy S, Lee LY, Kao CF, Chen WL, Wang HC, Shen ST, Jian JW, Yuan SSF, Kung YA, Wang YM. One-step-one-pot hydrothermally derived metal-organic-framework-nanohybrids for integrated point-of-care diagnostics of SARS-CoV-2 viral antigen/pseudovirus utilizing electrochemical biosensor chip. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 390:133960. [PMID: 37193120 PMCID: PMC10170875 DOI: 10.1016/j.snb.2023.133960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has become a global catastrophe, affecting the health and economy of the human community. It is required to mitigate the impact of pandemics by developing rapid molecular diagnostics for SARS-CoV-2 virus detection. In this context, developing a rapid point-of-care (POC) diagnostic test is a holistic approach to the prevention of COVID-19. In this context, this study aims at presenting a real-time, biosensor chip for improved molecular diagnostics including recombinant SARS-CoV-2 spike glycoprotein and SARS-CoV-2 pseudovirus detection based on one-step-one-pot hydrothermally derived CoFeBDCNH2-CoFe2O4 MOF-nanohybrids. This study was tested on a PalmSens-EmStat Go POC device, showing a limit of detection (LOD) for recombinant SARS-CoV-2 spike glycoprotein of 6.68 fg/mL and 6.20 fg/mL in buffer and 10% serum-containing media, respectively. To validate virus detection in the POC platform, an electrochemical instrument (CHI6116E) was used to perform dose dependent studies under similar experimental conditions to the handheld device. The results obtained from these studies were comparable indicating the capability and high detection electrochemical performance of MOF nanocomposite derived from one-step-one-pot hydrothermal synthesis for SARS-CoV-2 detection for the first time. Further, the performance of the sensor was tested in the presence of Omicron BA.2 and wild-type D614G pseudoviruses.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Li-Yun Lee
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Wen-Liang Chen
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Hsiang-Ching Wang
- Biomedical Technology and Device Research Lab, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - San-Tai Shen
- AnTaimmu BioMed Co., Ltd, Unit 304, No. 1, Lixing 1st Road, East District, Hsinchu 300, Taiwan
| | - Jhih-Wei Jian
- AnTaimmu BioMed Co., Ltd, Unit 304, No. 1, Lixing 1st Road, East District, Hsinchu 300, Taiwan
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty and College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| |
Collapse
|
9
|
Mojtahedi N, Zare‐Dorabei R, Hossein Mosavi S. A Zn‐Based Metal‐Organic Framework Modified by CuCl
2
Under Ambient Conditions for Simultaneous Ultrasonic‐Assisted Removal of Pb and Cd Ions with Fast Kinetics from Aqueous Solution. ChemistrySelect 2023. [DOI: 10.1002/slct.202204948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Dutta M, Bora J, Chetia B. Overview on recent advances of magnetic metal-organic framework (MMOF) composites in removal of heavy metals from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13867-13908. [PMID: 36547836 DOI: 10.1007/s11356-022-24692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Developing a novel, simple, and cost-effective analytical technique with high enrichment capacity and selectivity is crucial for environmental monitoring and remediation. Metal-organic frameworks (MOFs) are porous coordination polymers that are self-assembly synthesized from organic linkers and inorganic metal ions/metal clusters. Magnetic metal-organic framework (MMOF) composites are promising candidate among the new-generation sorbent materials available for magnetic solid-phase extraction (MSPE) of environmental contaminants due to their superparamagnetism properties, high crystallinity, permanent porosity, ultrahigh specific surface area, adaptable pore shape/sizes, tunable functionality, designable framework topology, rapid and ultrahigh adsorption capacity, and reusability. In this review, we focus on recent scientific progress in the removal of heavy metal ions present in contaminated aquatic system by using MMOF composites. Different types of MMOFs, their synthetic approaches, and various properties that are harnessed for removal of heavy metal ions from contaminated water are discussed briefly. Adsorption mechanisms involved, adsorption capacity, and regeneration of the MMOF sorbents as well as recovery of heavy metal ions adsorbed that are reported in the last ten years have been discussed in this review. Moreover, particular prospects, challenges, and opportunities in future development of MMOFs towards their greener synthetic approaches for their practical industrial applications have critically been considered in this review.
Collapse
Affiliation(s)
- Mayuri Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Jyotismita Bora
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
11
|
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-Jolandan S, Ghorbani-Bidkorpeh F, Asadian E, Shahbazi MA. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. APPLIED MATERIALS TODAY 2022; 29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chem 2022; 405:134842. [DOI: 10.1016/j.foodchem.2022.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
13
|
Far HS, Najafi M, Hasanzadeh M, Rabbani M. Self-Supported 3D-Printed Lattices Containing MXene/Metal-Organic Framework (MXOF) Composite as an Efficient Adsorbent for Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44488-44497. [PMID: 36153953 DOI: 10.1021/acsami.2c13830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are well-known porous crystalline materials that have been used for the removal of organic pollutants from wastewater. To enhance the adsorption performance of these adsorbents and facilitate their recycling process, we propose a hybrid composite of an MXene/metal-organic framework (MXOF) decorated on a hierarchical and self-supported porous three-dimensional (3D) printed lattice structure (3D-MXOF). In this design, the porous MXOF composite extremely enhanced the specific surface area and synergistically promoted the dye removal efficiency of 3D-printed lattices. Scanning electron microscopy images indicated that the MXOF composite was uniformly decorated on a 3D-printed lattice structure without agglomeration. The resultant supported 3D-MXOF structures were evaluated for the adsorption of anionic dyes. The results revealed high adsorption performance (91.98% for methyl orange and 84.9% for direct red 31 dyes) and fast adsorption kinetics following a pseudo-first-order kinetic model. Moreover, the 3D-MXOF structure possesses a facile recycling process with sustainable adsorption performance after four consecutive adsorption-desorption cycles.
Collapse
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, P.O. Box, Narmak 16846-13114, Tehran, Iran
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, P.O. Box, Narmak 16846-13114, Tehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box, 89195-741 Yazd, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, P.O. Box, Narmak 16846-13114, Tehran, Iran
| |
Collapse
|
14
|
Lelouche SNK, Biglione C, Horcajada P. Advances in plasmonic-based MOF composites, their bio-applications and perspectives in this field. Expert Opin Drug Deliv 2022; 19:1417-1434. [PMID: 36176048 DOI: 10.1080/17425247.2022.2130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomaterials have been used for bio-applications since the late 20st century. In an attempt to tailor and optimize their properties, and by extension their efficiency, composites have attracted considerable attention. In this regard, recent studies on plasmonic nanoparticles and metal-organic framework (NP@MOF) composites suggested these materials show great promise in this field. AREAS COVERED This review focused on the more recent scientific advances in the synthetic strategies to optimize plasmonic MOF nanocomposites currently available, as well as their bio-application, particularly as biosensors and therapy. EXPERT OPINION Plasmonic MOF nanocomposites have shown great potential as they combine the properties of both materials with proven efficiency in bio-application. On the one hand, nanoMOFs have proven their potential particularly as drug nanocarriers, owing to their exceptional porosity and tunability. On the other hand, plasmonic nanoparticles have been an asset for imaging and phototherapy. Different strategies have been reported to develop these nanocomposites, mainly including core-shell, encapsulation, and in situ reduction. In addition, advanced composite structures should be considered, such as mixed metal nanoparticles, hollow structures or the combination of several approaches. Specifically, plasmonic MOF nanocomposites prove to be attractive stimuli responsive drug delivery systems, phototherapeutic agents as well as highly sensitive biosensors.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
15
|
Zhu T, Li N, Huang J, Xu X, Su X, Ma Y, Yang R, Ruan J, Su H. An electrochemical aptasensor based on target triggered multiple-channel DNAzymes cycling amplification strategy with PtFe@Co-MOF as signal amplifier. Mikrochim Acta 2022; 189:388. [PMID: 36129574 DOI: 10.1007/s00604-022-05478-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
A novel electrochemical aptasensor for the detection of Aflatoxin B1 (AFB1) was developed for the first time by using the target-triggered multiple-channel deoxyribozymes (DNAzymes) cycling amplified assay with Pt Fe doped NH2-Co-MOF (PtFe@Co-MOF) as a signal amplifier. In the presence of AFB1, a self-assembling cross-over nucleic structure could be triggered by AFB1 via two aptamers' structure switching for strand displacement, resulting in four channels of Mg2+-dependent DNAzyme recycling simultaneously to multiply the detection signals. These DNAzymes cyclically split the substrate sequence to release the PtFe@Co-MOF labeled detection probe (DP), which is subsequently hybridized with the capture probes on the Au-deposited glassy carbon electrode. The fabrication procedure was characterized by differential pulse voltammetry, and the results of the morphological and element composition characteristics methods were analyzed to determine the successful preparation of PtFe@Co-MOF. The limit of detection (LOD) for AFB1 detection was 2 pg mL-1 with a linear range from 5 pg mL-1 to 80 ng mL-1. By comparison, the enhanced detection sensitivity has been found to originate from the efficient shearing of DNAzymes, enhanced peroxidase-like capability, and multiple active sites of PtFe@Co-MOF. Besides, this aptasensor showed high specificity for AFB1 compared with similar mycotoxins and exhibited high accuracy with low experimental cost and easy operation. Furthermore, the unique design of electrochemical aptasensors could provide a promising platform for the onsite determination of AFB1, as well as other targets by replacing the aptamer and other core recognition sequences.
Collapse
Affiliation(s)
- Tong Zhu
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Jiangjian Huang
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Xiaohansi Xu
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Xin Su
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Yi Ma
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Renxiang Yang
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Jia Ruan
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China.
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China.
- Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, 610050, China.
| |
Collapse
|
16
|
Sohrabi H, Sani PS, Orooji Y, Majidi MR, Yoon Y, Khataee A. MOF-based sensor platforms for rapid detection of pesticides to maintain food quality and safety. Food Chem Toxicol 2022; 165:113176. [DOI: 10.1016/j.fct.2022.113176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
|
17
|
Khosroshahi N, Darabi Goudarzi M, Safarifard V. Fabrication of a novel heteroepitaxial structure from an MOF-on-MOF architecture as a photocatalyst for highly efficient Cr( vi) reduction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05440f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ce-on-Zr-MOF-808, a novel MOF-on-MOF hybrid used for efficient chromium reduction under visible-light irradiation.
Collapse
Affiliation(s)
- Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Moein Darabi Goudarzi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
18
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
19
|
Ding Y, Wei F, Dong C, Li J, Zhang C, Han X. UiO-66 based electrochemical sensor for simultaneous detection of Cd(II) and Pb(II). INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Shahini M, Taheri N, Mohammadloo HE, Ramezanzadeh B. A comprehensive overview of nano and micro carriers aiming at curtailing corrosion progression. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metal-organic frameworks for chemical sensing devices. MATERIALS HORIZONS 2021; 8:2387-2419. [PMID: 34870296 DOI: 10.1039/d1mh00609f] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are exceptionally large surface area materials with organized porous cages that have been investigated for nearly three decades. Due to the flexibility in their design and predisposition toward functionalization, they have shown promise in many areas of application, including chemical sensing. Consequently, they are identified as advanced materials with potential for deployment in analytical devices for chemical and biochemical sensing applications, where high sensitivity is desirable, for example, in environmental monitoring and to advance personal diagnostics. To keep abreast of new research, which signposts the future directions in the development of MOF-based chemical sensors, this review examines studies since 2015 that focus on the applications of MOF films and devices in chemical sensing. Various examples that use MOF films in solid-state sensing applications were drawn from recent studies based on electronic, electrochemical, electromechanical and optical sensing methods. These examples underscore the readiness of MOFs to be integrated in optical and electronic analytical devices. Also, preliminary demonstrations of future sensors are indicated in the performances of MOF-based wearables and smartphone sensors. This review will inspire collaborative efforts between scientists and engineers working within the field of MOFs, leading to greater innovations and accelerating the development of MOF-based analytical devices for chemical and biochemical sensing applications.
Collapse
Affiliation(s)
- Joseph F Olorunyomi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Shu Teng Geh
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | | |
Collapse
|
22
|
Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev 2021; 121:12278-12326. [PMID: 34280313 DOI: 10.1021/acs.chemrev.1c00243] [Citation(s) in RCA: 447] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.
Collapse
Affiliation(s)
- Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangliang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi 710072, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
23
|
Panja S, Kumar A, Misra N, Ghosh S, Raza R, Ghosh K. Naphthalene‐Coupled Pyridinium Urea Salt in Fluorometric Sensing of Iodide. ChemistrySelect 2021. [DOI: 10.1002/slct.202100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Santanu Panja
- Department of Chemistry University of Kalyani Kalyani 741235 India
- School of Chemistry University of Glasgow Glasgow UK G12 8QQ
| | - Abhishek Kumar
- Department of Physics University of Lucknow Lucknow 226007 India
| | - Neeraj Misra
- Department of Physics University of Lucknow Lucknow 226007 India
| | - Subhasis Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Rameez Raza
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Kumaresh Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| |
Collapse
|
24
|
Ragheb E, Shamsipur M, Jalali F, Sadeghi M, Babajani N, Mafakheri N. Magnetic solid-phase extraction using metal–organic framework-based biosorbent followed by ligandless deep-eutectic solvent-ultrasounds-assisted dispersive liquid–liquid microextraction (DES-USA-DLLME) for preconcentration of mercury (II). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Structural and Thermal Investigations of Co(II) and Ni(II) Coordination Polymers Based on biphenyl-4,4'-dioxydiacetate Linker. MATERIALS 2021; 14:ma14133545. [PMID: 34202006 PMCID: PMC8269505 DOI: 10.3390/ma14133545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Two coordination polymers, [Co(µ4-L)(H2O)2]n (1) and [Ni(µ-L)(H2O)4]n (2), were solvothermally assembled from the corresponding metal(II) chlorides and biphenyl-4,4-dioxydiacetic acid (H2L) as a flexible dicarboxylate linker. The cobalt(II) compound 1 featured a layer-pillared 3D metal-organic network with a cds topology, while the nickel(II) derivative 2 represented a linear chain 1D coordination polymer with a 2C1 topology. The µ4− and µ-L2− linkers exhibited different denticity and coordination modes in the synthesized compounds, thus contributing to their structural diversity. The dimensionality of 1 and 2 had an influence on their thermal stability and decomposition processes, which were investigated in detail by TG-DSC and TG-FTIR methods. Thermal decomposition products of coordination polymers were also analyzed by PXRD, confirming the formation of Co3O4/CoO and NiO as final materials. The obtained compounds broaden a family of coordination polymers assembled from flexible dicarboxylate linkers.
Collapse
|
26
|
Tasaki-Handa Y, Shibukawa M, Saito S. Effect of coexisting alkali metal ions on the variation in the coordination mode of 1,4-phenylenbis(methylidyne)tetrakis(phosphonic acid) in a lanthanum(III) metal–organic framework. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Han S, Ding Y, Teng F, Yao A, Leng Q. Determination of chloropropanol with an imprinted electrochemical sensor based on multi-walled carbon nanotubes/metal-organic framework composites. RSC Adv 2021; 11:18468-18475. [PMID: 35480926 PMCID: PMC9033443 DOI: 10.1039/d1ra02731j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
In this paper, a composite composed of carboxylated multi-wall carbon nanotubes (cMWCNT) incorporated in a metal–organic framework (MOF-199) has been synthesized using 1,3,5-benzoic acid as a ligand through a simple solvothermal method. The synthesized cMWCNT/MOF-199 composite was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffractometry (XRD). The cMWCNT/MOF-199 hybrids were modified on the surface of glassy carbon electrodes (GCE) to prepare a molecularly imprinted electrochemical sensor (MIECS) for specific recognition of 3-chloro-1,2-propanediol (3-MCPD). The electrodes were characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under optimal conditions, the electrochemical sensor exhibited an excellent sensitivity and high selectivity with a good linear response range from 1.0 × 10−9 to 1.0 × 10−5 mol L−1 and an estimated detection limit of 4.3 × 10−10 mol L−1. Furthermore, this method has been successfully applied to the detection of 3-MCPD in soy sauce, and the recovery ranged from 96% to 108%, with RSD lower than 5.5% (n = 3), showing great potential for the selective analysis of 3-MCPD in foodstuffs. In this study, cMWCNT/MOF-199 composites were used as the modified electrodes, and a MIECS having specific recognition of 3-MCPD was prepared by electrochemical polymerization for selective analysis of 3-MCPD in foodstuffs.![]()
Collapse
Affiliation(s)
- Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China .,Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University Qiqihar 161006 China
| | - Yuxin Ding
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Fu Teng
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Aixin Yao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Qiuxue Leng
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| |
Collapse
|
28
|
Zhu X, Jiang W, Zhao Y, Liu H, Sun B. Single, dual and multi-emission carbon dots based optosensing for food safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Morozova S, Sharsheeva A, Morozov M, Vinogradov A, Hey-Hawkins E. Bioresponsive metal–organic frameworks: Rational design and function. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Mahmoud NF, Fouad OA, Ali AE, Mohamed GG. Potentiometric Determination of the Al(III) Ion in Polluted Water and Pharmaceutical Samples by a Novel Mesoporous Copper Metal–Organic Framework-Modified Carbon Paste Electrode. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nessma F. Mahmoud
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Omar A. Fouad
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Aya E. Ali
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
31
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Sun SL, Sun XY, Sun Q, Gao EQ. Highly efficient fluorescent chemosensor for nitro antibiotic detection based on luminescent coordination polymers with 2,6-di(4-carboxyphenyl)pyrazine. CrystEngComm 2021. [DOI: 10.1039/d1ce00245g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of isostructural porous supramolecular frameworks, {[M(DCPP)(H2O)]·(DMF)}n, are synthesized. The as-obtained fluorescent Zn-MOF has good recognition ability towards nitro-antibiotics with low detection limits and a wide linear range.
Collapse
Affiliation(s)
- Shuang-Li Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Xi-Yu Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Qian Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - En-Qing Gao
- Shanghai key laboratory of Green Chemistry and Chemical Processes
- School of chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
33
|
Vikrant K, Kim KH. Metal–organic framework micromotors: perspectives for environmental applications. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01124c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal–organic framework micromotors possessing a self-propulsion system have been proposed as a new generation of advanced materials for various environmental applications.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| |
Collapse
|
34
|
Rezki M, Septiani NLW, Iqbal M, Harimurti S, Sambegoro P, Adhika DR, Yuliarto B. Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors. J Mater Chem B 2021; 9:5711-5721. [PMID: 34223862 DOI: 10.1039/d1tb00222h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic framework (MOF) nanomaterials offer a wide range of promising applications due to their unique properties, including open micro- and mesopores and richness of functionalization. Herein, a facile synthesis via a solvothermal method was successfully employed to prepare amine-functionalized Cu-MOF nanospheres. Moreover, the growth and the morphology of the nanospheres were optimized by the addition of PVP and TEA. By functionalization with an amine group, the immobilization of a bioreceptor towards the detection of hepatitis B infection biomarker, i.e., hepatitis B surface antigen (HBsAg), could be realized. The immobilization of the bioreceptor/antibody to Cu-MOF nanospheres was achieved through a covalent interaction between the carboxyl group of the antibodies and the amino-functional ligand in Cu-MOF via EDC/NHS coupling. The amine-functionalized Cu-MOF nanospheres act not only as a nanocarrier for antibody immobilization, but also as an electroactive material to generate the electrochemical signal. The electrochemical sensing performance was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results showed that the current response proportionally decreased with the increase of HBsAg concentration. More importantly, the sensing performance of the amine-functionalized Cu-MOF nanospheres towards HBsAg detection was found to be consistent in real human serum media. This strategy successfully resulted in wide linear range detection of HBsAg from 1 ng mL-1 to 500 ng mL-1 with a limit of detection (LOD) of 730 pg mL-1. Thus, our approach provides a facile and low-cost synthesis process of an electrochemical immunosensor and paves the way to potentially utilize MOF-based nanomaterials for clinical use.
Collapse
Affiliation(s)
- Muhammad Rezki
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Suksmandhira Harimurti
- Lab-On-a-Chip Research Group, Department of Biomedical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Poetro Sambegoro
- Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Damar Rastri Adhika
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
35
|
Chai HM, Zhang GQ, Jiao CX, Ren YX, Gao LJ. A Multifunctional Tb-MOF Detector for H 2O 2, Fe 3+, Cr 2O 7 2-, and TPA Explosive Featuring Coexistence of Binuclear and Tetranuclear Clusters. ACS OMEGA 2020; 5:33039-33046. [PMID: 33403265 PMCID: PMC7774076 DOI: 10.1021/acsomega.0c04526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
A novel three-dimensional microporous terbium(III) metal-organic framework (Tb-MOF) named as [Tb10 (DBA)6(OH)4(H2O)5]·(H3O)4 (1), was successfully obtained by a solvothermal method based on terbium nitrate and 5-di(2',4'-dicarboxylphenyl) benzoic acid (H5DBA). The Tb-MOF has been characterized by single crystal X-ray diffraction, elemental analysis, thermogravimetry, and fluorescence properties, and the purity was further confirmed by powder X-ray diffraction (PXRD) analysis. Structural analysis shows that there are two kinds of metal cluster species: binuclear and tetranuclear, which are linked by H5DBA ligands in two μ7 high coordination fashions into a three-dimensional microporous framework. Fluorescence studies show that the Tb-MOF can detect H2O2, Fe3+, and Cr2O7 2- with high sensitivity and selectivity and can also be used for electrochemical detection of exposed 2,4,6-trinitrophenylamine (TPA) in water. The highly selective and sensitive detection ability of the Tb-MOF might make it a potential multifunctional sensor in the future.
Collapse
Affiliation(s)
- Hong-mei Chai
- Shaanxi Key Laboratory of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| | - Gang-qiang Zhang
- Shaanxi Key Laboratory of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| | - Chun-xia Jiao
- Shaanxi Key Laboratory of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| | - Yi-xia Ren
- Shaanxi Key Laboratory of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| | - Lou-jun Gao
- Shaanxi Key Laboratory of
Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, P. R. China
| |
Collapse
|
36
|
Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Lee G, Yoon JH, Kwon K, Han H, Song JH, Lim KS, Lee WR. Dimensional selective syntheses of metal–organic frameworks using mixed organic ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Yang Y, Wu W, Wang Z, Huang L, Ma X, Zhang Z, Xiang S. UiO‐66/GO Composites with Improved Electrochemical Properties for Effective Detection of Phosphite(P(III)) in Phosphate(P(V)) Buffer Solutions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Wangui Wu
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Ziyan Wang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Limei Huang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002 PR China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002 PR China
| |
Collapse
|
39
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
40
|
|
41
|
Abstract
The hybrid materials that are created by supporting or incorporating polyoxometalates (POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are ideal hosts because of their high surface area, long-range ordered structure, and high tunability in terms of the pore size and channels. In some cases, MOFs add an extra dimension to the functionality of hybrids. This review summarizes the recent developments in the field of POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and photocatalysis). The more than 100 papers on this topic have been systematically summarized in a handy table, which covers almost all of the work conducted in this field up to now.
Collapse
|
42
|
Aghayi-Anaraki M, Safarifard V. Fe3
O4
@MOF Magnetic Nanocomposites: Synthesis and Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Vahid Safarifard
- Department of Chemistry; Iran University of Science and Technology; 16846-13114 Tehran Iran
| |
Collapse
|
43
|
André L, Desbois N, Gros CP, Brandès S. Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies. Dalton Trans 2020; 49:15161-15170. [DOI: 10.1039/d0dt02511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overview of the use of porous materials for gas sensing to analyze the exhaled breath of patients for disease identification.
Collapse
Affiliation(s)
- Laurie André
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Claude P. Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| |
Collapse
|