1
|
Bernkop-Schnürch A, Chavooshi D, Descher HA, Leitner D, Talasz H, Hermann M, Wurst K, Hohloch S, Gust R, Kircher B. Design, Synthesis, Electrochemical, and Biological Evaluation of Fluorescent Chlorido[ N, N'-bis(methoxy/hydroxy)salicylidene-1,2-bis(4-methoxyphenyl)ethylenediamine]iron(III) Complexes as Anticancer Agents. J Med Chem 2023; 66:15916-15925. [PMID: 38013413 PMCID: PMC10726350 DOI: 10.1021/acs.jmedchem.3c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The impact of methoxy and hydroxyl groups at the salicylidene moiety of chlorido[N,N'-bis(methoxy/hydroxy)salicylidene-1,2-bis(4-methoxyphenyl)ethylenediamine]iron(III) complexes was evaluated on human MDA-MB 231 breast cancer and HL-60 leukemia cells. Methoxylated complexes (C1-C3) inhibited proliferation, migration, and metabolic activity in a concentration-dependent manner following the rank order: C2 > C3 > C1. In particular, C2 was highly cytotoxic with an IC50 of 4.2 μM which was 6.6-fold lower than that of cisplatin (IC50 of 27.9 μM). In contrast, hydroxylated complexes C4-C6 were almost inactive up to the highest concentration tested due to lack of cellular uptake. C2 caused a dual mode of cell death, ferroptosis, and necroptosis, whereby at higher concentrations, ferroptosis was the preferred form. Ferroptotic morphology and the presence of ferrous iron and lipid reactive oxygen species proved the involvement of ferroptosis. C2 was identified as a promising lead compound for the design of drug candidates inducing ferroptosis.
Collapse
Affiliation(s)
- Astrid
Dagmar Bernkop-Schnürch
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Donja Chavooshi
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Immunobiology
and Stem Cell Laboratory, Department of Internal Medicine V (Hematology
and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Hubert Aaron Descher
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniel Leitner
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heribert Talasz
- Biocenter,
Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department
of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Stephan Hohloch
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI−Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Brigitte Kircher
- Immunobiology
and Stem Cell Laboratory, Department of Internal Medicine V (Hematology
and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Tyrolean
Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Alkis ME, Buldurun K, Alan Y, Turan N, Altun A. Electroporation Enhances the Anticancer Effects of Novel Cu(II) and Fe(II) Complexes in Chemotherapy-Resistant Glioblastoma Cancer Cells. Chem Biodivers 2023; 20:e202200710. [PMID: 36601965 DOI: 10.1002/cbdv.202200710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Science Vocational School, Muş Alparslan University, 49250, Muş, Turkey
| | - Yusuf Alan
- Department of Molecular Biology, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Ayhan Altun
- Department of Chemistry, Gebze Technical University, 41400, Kocaeli, Turkey
| |
Collapse
|
3
|
Wen X, Chen W, Hou J, Wu H, Liu Y, Sun C. SYNTHESES, CHARACTERIZATION, AND CRYSTAL STRUCTURES OF COBALT(III) COMPLEXES DERIVED FROM 2-(((2- (PYRROLIDIN-1-YL)ETHYL)IMINO)METHYL) PHENOL WITH THE ANTIBACTERIAL ACTIVITY. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Şahin S, Dege N. (E)-N-(3-chlorophenyl)-1-(5-nitro-2-(piperidin-1-yl)phenyl)methanimine: X-Ray, DFT, ADMET, Boiled-Egg Model, Druggability, Bioavailabilty, and Human Cyclophilin D (CypD) Inhibitory Activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|