1
|
Saini P, Gupta S, Ramakrishnan S. Influence of internal electrostatics on reduction potentials in amine-ligated bimetallic copper complexes. Phys Chem Chem Phys 2025; 27:4398-4406. [PMID: 39927757 DOI: 10.1039/d4cp04569f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The electrostatic modulation of redox potentials of molecular electrocatalysts is a promising strategy to minimize overpotentials without compromising their catalytic activity given their intrinsic correlation. While the introduction of s-block cations to modulate the redox potential of single-site transition metal catalysts is known, the prevalence and nature of such electrostatic interactions in bimetallic complexes deserves further attention. In this work, using density functional theory and electrostatic charged sphere models, we quantify the influence of distance-dependent electrostatic effects on the reduction potentials of a bimetallic Cu(II) model system with a dipicolylamine (DPA) ligand, wherein the Cu(II) centers are bridged by an aliphatic diamine (NH2-(CH2)n-NH2) linker of varying chain lengths (n = 0 to 10). The calculated reduction potentials in non-aqueous solvation environments were found to vary linearly with the reciprocal of the Cu-Cu distance with a slope of 4.1 V Å, and span more than 500 mV, suggesting a strong distance-dependent coulombic electrostatic interaction between the two metal centers. The effect of chemical perturbations to the primary coordination sphere on the distance-dependent electrostatic effects, viz. nature of the metal ion, overall charge and ligand field, was quantified. The in silico predicted shifts in the one-electron redox potential as a function of the chain length in the model system were experimentally validated with the synthesis and cyclic voltammetry studies of two bimetallic Cu(II)(DPA) complexes bridged by 1,4-diaminobutane and 1,8-diaminooctane in acetonitrile.
Collapse
Affiliation(s)
- Prateek Saini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Shubham Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Srinivasan Ramakrishnan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
2
|
Alvarez-Hernandez JL, Zhang X, Cui K, Deziel AP, Hammes-Schiffer S, Hazari N, Piekut N, Zhong M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt-porphyrin complexes. Chem Sci 2024; 15:6800-6815. [PMID: 38725508 PMCID: PMC11077573 DOI: 10.1039/d3sc06177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
A CoII-porphyrin complex (1) with an appended aza-crown ether for Lewis acid (LA) binding was synthesized and characterized. NMR spectroscopy and electrochemistry show that cationic group I and II LAs (i.e., Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) bind to the aza-crown ether group of 1. The binding constant for Li+ is comparable to that observed for a free aza-crown ether. LA binding causes an anodic shift in the CoII/CoI couple of between 10 and 40 mV and also impacts the CoIII/CoII couple. The magnitude of the anodic shift of the CoII/CoI couple varies linearly with the strength of the LA as determined by the pKa of the corresponding metal-aqua complex, with dications giving larger shifts than monocations. The extent of the anodic shift of the CoII/CoI couple also increases as the ionic strength of the solution decreases. This is consistent with electric field effects being responsible for the changes in the redox properties of 1 upon LA binding and provides a novel method to tune the reduction potential. Density functional theory calculations indicate that the bound LA is 5.6 to 6.8 Å away from the CoII ion, demonstrating that long-range electrostatic effects, which do not involve changes to the primary coordination sphere, are responsible for the variations in redox chemistry. Compound 1 was investigated as a CO2 reduction electrocatalyst and shows high activity but rapid decomposition.
Collapse
Affiliation(s)
| | - Xiaowei Zhang
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| | - Kai Cui
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | | | - Nilay Hazari
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Nicole Piekut
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| |
Collapse
|
3
|
Lionetti D, Suseno S, Shiau AA, de Ruiter G, Agapie T. Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids. JACS AU 2024; 4:344-368. [PMID: 38425928 PMCID: PMC10900226 DOI: 10.1021/jacsau.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox-inactive metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca2+ center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.
Collapse
Affiliation(s)
| | - Sandy Suseno
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Angela A. Shiau
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Boggiano AC, Studvick CM, Steiner A, Bacsa J, Popov IA, La Pierre HS. Structural distortion by alkali metal cations modulates the redox and electronic properties of Ce 3+ imidophosphorane complexes. Chem Sci 2023; 14:11708-11717. [PMID: 37920331 PMCID: PMC10619540 DOI: 10.1039/d3sc04262f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
A series of Ce3+ complexes with counter cations ranging from Li to Cs are presented. Cyclic voltammetry data indicate a significant dependence of the oxidation potential on the alkali metal identity. Analysis of the single-crystal X-ray diffraction data indicates that the degree of structural distortion of the secondary coordination sphere is linearly correlated with the measured oxidation potential. Solution electronic absorption spectroscopy confirms that the structural distortion is reflected in the solution structure. Computational studies further validate this analysis, deciphering the impact of alkali metal cations on the Ce atomic orbital contributions, differences in energies of Ce-dominant molecular orbitals, energy shift of the 4f-5d electronic transitions, and degree of structural distortions. In sum, the structural impact of the alkali metal cation is demonstrated to modulate the redox and electronic properties of the Ce3+ complexes, and provides insight into the rational tuning of the Ce3+ imidophosphorane complex oxidation potential through alkali metal identity.
Collapse
Affiliation(s)
- Andrew C Boggiano
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| | - Chad M Studvick
- Department of Chemistry, The University of Akron Akron Ohio 44325-3601 USA
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| | - Ivan A Popov
- Department of Chemistry, The University of Akron Akron Ohio 44325-3601 USA
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
- Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| |
Collapse
|
5
|
Brown AM, Butman JL, Lengacher R, Vargo NP, Martin KE, Koller A, Śmiłowicz D, Boros E, Robinson JR. N, N-Alkylation Clarifies the Role of N- and O-Protonated Intermediates in Cyclen-Based 64Cu Radiopharmaceuticals. Inorg Chem 2023; 62:1362-1376. [PMID: 36490364 DOI: 10.1021/acs.inorgchem.2c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radioisotopes of Cu, such as 64Cu and 67Cu, are alluring targets for imaging (e.g., positron emission tomography, PET) and radiotherapeutic applications. Cyclen-based macrocyclic polyaminocarboxylates are one of the most frequently examined bifunctional chelators in vitro and in vivo, including the FDA-approved 64Cu radiopharmaceutical, Cu(DOTATATE) (Detectnet); however, connections between the structure of plausible reactive intermediates and their stability under physiologically relevant conditions remain to be established. In this study, we share the synthesis of a cyclen-based, N,N-alkylated spirocyclic chelate, H2DO3AC4H8, which serves as a model for N-protonation. Our combined experimental (in vitro and in vivo) and computational studies unravel complex pH-dependent speciation and enable side-by-side comparison of N- and O-protonated species of relevant 64Cu radiopharmaceuticals. Our studies suggest that N-protonated species are not inherently unstable species under physiological conditions and demonstrate the potential of N,N-alkylation as a tool for the rational design of future radiopharmaceuticals.
Collapse
Affiliation(s)
- Alexander M Brown
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Jana L Butman
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Raphael Lengacher
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Natasha P Vargo
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Angus Koller
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|
6
|
Hanaway D, Kennedy CR. Automated Variable Electric-Field DFT Application for Evaluation of Optimally Oriented Electric Fields on Chemical Reactivity. J Org Chem 2023; 88:106-115. [PMID: 36507909 PMCID: PMC9830642 DOI: 10.1021/acs.joc.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent theoretical work and experiments at molecular junctions have provided a strong conceptualization for the effects of oriented electric fields (OEFs) on organic reactions. Depending on the axis of application, OEFs can increase (or decrease) the reaction rate or distinguish between isomeric pathways. Despite the conceptual elegance of OEFs, which may be applied externally or induced locally, as tools for catalyzing organic reactions, implementation in synthetically relevant systems has been hampered by inefficiencies in evaluating reaction sensitivity to field effects. Herein, we describe the development of the Automated Variable Electric-Field DFT Application (A.V.E.D.A.) for streamlined evaluation of a reaction's susceptibility to OEFs. This open-source software was designed to be accessible for nonexpert users of computational and programming tools. Following initiation by a single command (and with no subsequent intervention) the Linux workflow manages a series of density functional theory calculations and mathematical manipulations to optimize local-minimum and transition-state structures in oriented electric fields of increasing magnitude. The resulting molecular and reaction dipole moments, field-perturbed geometries, and net effective activation energies are compiled for user interpretation. Ten representative pericyclic reactions that showcase the development and evaluation of A.V.E.D.A. are described.
Collapse
|
7
|
Chalcogenolato-bridged rhenium(I)-based ester functionalized flexible dinuclear metallacrown ethers: Cation binding, molecular recognition and docking studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Scherpf T, Carr CR, Donnelly LJ, Dubrawski ZS, Gelfand BS, Piers WE. A Mesoionic Carbene-Pyridine Bidentate Ligand That Improves Stability in Electrocatalytic CO 2 Reduction by a Molecular Manganese Catalyst. Inorg Chem 2022; 61:13644-13656. [PMID: 35981323 DOI: 10.1021/acs.inorgchem.2c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tricarbonyl Group 7 complexes have a longstanding history as efficacious CO2 electroreduction catalysts. Typically, these complexes feature an auxiliary 2,2'-bipyridine ligand that assists in redox steps by delocalizing the electron density into the ligand orbitals. While this feature lends to an accessible redox potential for CO2 electroreduction, it also presents challenges for electrocatalysis with Mn because the electron density is removed from metal-ligand bonding orbitals. The results presented here thus introduce a mesoionic carbene (MIC) as a potent ligand platform to promote Mn-based electrocatalysis. The strong σ donation of the N,C-bidentate MIC is shown to help centralize the electron density on the Mn center while also maintaining relevant redox potentials for CO2 electroreduction. Mechanistic investigation supports catalytic turnover at two operative potentials separated by 400 mV. In the low operating potential regime at -1.54 V, Mn(0) species catalyze CO2 to CO and CO32-, which has a maximum rate of 7 ± 5 s-1 and is stable for up to 30.7 h. At higher operating potential at -1.94 V, "Mn(-1)" catalyzes CO2 to CO and H2O with faster turnovers of 200 ± 100 s-1, with the trade-off being less stability at 6.7 h. The relative stabilities of Mn complexes bearing MIC and 4,4'-di-tert-butyl-2,2'-bipyridine were compared by evaluation under the same electrolysis conditions and therefore elucidated that the MIC promotes longevity for CO evolution throughout a 5 h period.
Collapse
Affiliation(s)
- Thorsten Scherpf
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Cody R Carr
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Laurie J Donnelly
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Zachary S Dubrawski
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
Affiliation(s)
- Anuj Pennathur
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Jahan Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Golwankar RR, Kumar A, Day VW, Blakemore JD. Revealing the Influence of Diverse Secondary Metal Cations on Redox‐Active Palladium Complexes. Chemistry 2022; 28:e202200344. [DOI: 10.1002/chem.202200344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Riddhi R. Golwankar
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
| | - Amit Kumar
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
- Current address: Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Victor W. Day
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
| | - James D. Blakemore
- Department of Chemistry University of Kansas 1567 Irving Hill Road Lawrence Kansas 66045 USA
| |
Collapse
|
11
|
Hellman AN, Intrator JA, Choate J, Velazquez DA, Marinescu SC. Primary- and secondary-sphere effects of amine substituent position on rhenium bipyridine electrocatalysts for CO2 reduction. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Carr CR, Koenig JDB, Grant MJ, Piers WE, Welch GC. Boosting CO 2-to-CO evolution using a bimetallic diketopyrrolopyrrole tethered rhenium bipyridine catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of homogeneous electro- and photo-catalysis involving molecular catalysts offers valuable insight into reaction mechanisms as it relates to the structure–function of these tunable systems.
Collapse
Affiliation(s)
- Cody R. Carr
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Josh D. B. Koenig
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Michael J. Grant
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Warren E. Piers
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Gregory C. Welch
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|