1
|
Mierzati M, Miyahara Y, Curial B, Nomura CT, Taguchi S, Abe H, Tsuge T. Tacticity Characterization of Biosynthesized Polyhydroxyalkanoates Containing ( S)- and ( R)-3-Hydroxy-2-Methylpropionate Units. Biomacromolecules 2024; 25:444-454. [PMID: 38135668 DOI: 10.1021/acs.biomac.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Polyhydroxyalkanoates (PHAs), aliphatic polyesters synthesized by microorganisms, have gained considerable attention as biodegradable plastics. Recently, α-carbon-methylated PHAs have been shown to exhibit several interesting properties that differ from those of conventional PHAs, such as their crystallization behavior and material properties. This study investigated α-carbon methylated (S)- and (R)-3-hydroxy-2-methylpropionate (3H2MP) as new repeating units. 3H2MP units were homopolymerized or copolymerized with (R)-3-hydroxybutyrate (3HB) by manipulating the culture conditions of recombinant Escherichia coli LSBJ. Consequently, PHAs with 3H2MP units ranging from 5 to 100 mol % were synthesized by external addition of (R)- and (S)-enantiomers or the racemic form of 3H2MPNa. The (S)-3H2MP precursor supplemented into the culture medium was almost directly polymerized into PHA while maintaining its chirality. Therefore, a highly isotactic P(3H2MP) (R:S = 1:99) was synthesized, which displayed a melting temperature of 114-119 °C and a relatively high enthalpy of fusion (68 J/g). In contrast, in cultures supplemented with (R)-3H2MP, the precursor was racemized and polymerized into PHA, resulting in the synthesis of the amorphous polymer atactic P(3H2MP) (R:S = 40:60). However, racemization was not observed at a low concentration of the (R)-3H2MP precursor, thereby synthesizing P(3HB-co-8 mol % 3H2MP) with 100% (R)-3H2MP units. The thermogravimetric analysis revealed that the thermal degradation temperatures at 5% weight loss of P(3H2MP)s occurred at approximately 313 °C, independent of tacticity, which is substantially higher than that of P(3HB) (257 °C). This study demonstrates a new concept for controlling the physical properties of biosynthesized PHA by manipulating the polymers' tacticity using 3H2MP units.
Collapse
Affiliation(s)
- Maierwufu Mierzati
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Yuki Miyahara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Blanche Curial
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Christopher T Nomura
- Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844-3010, United States
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| |
Collapse
|
2
|
Using runaway replication to express polyhydroxyalkanoic acid (pha) genes from a novel marine bacterium in enteric bacteria: The influence of temperature and phasins on PHA accumulation. PLoS One 2022; 17:e0275597. [PMID: 36477445 PMCID: PMC9728866 DOI: 10.1371/journal.pone.0275597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022] Open
Abstract
While plastics have revolutionized our world, plastic waste has serious environmental and economic impacts. Polyhydroxyalkanoic acid (PHA) is a bacterial carbon and energy reserve shown to be both biodegradable and biocompatible and could potentially replace conventional plastics. However, cost-effective mass production remains elusive. Bacteria often accumulate PHA as cytoplasmic granules. PHA synthase creates the PHA polymer from acetoacyl-CoA monomers, while phasins are small multifunctional proteins that are found in abundance on the granule surface. The PHA synthase gene from a novel marine isolate, Vibrio B-18 (or B-18), was placed in the presence or absence of an upstream phasin gene in a runaway replication plasmid using polymerase chain reaction (PCR) technology. Plasmid gene expression may be induced chemically or thermally. Overexpression of the PHA genes was demonstrated by SDS-PAGE analysis, and microscopy was used to detect PHA accumulation in three different enteric bacteria (Escherichia coli, Klebsiella aerogenes, and Shigella flexneri). While the B-18 genes were clearly overexpressed at 41°C, PHA accumulation occurred more readily at the lower (30°C) non-inducing temperature regardless of chemical induction if the phasin gene was present. A mutational analysis confirmed the identity of the start codon for the PHA synthase gene and provided evidence supporting the requirement for phasins to allow for PHA accumulation in the recombinant hosts. The findings described in this study confirm the conclusions obtained from related studies from other laboratories and lend support to the importance of including a phasin gene in addition to the basic genes needed for PHA synthesis and accumulation in recombinant enteric bacteria, such as Escherichia coli, Klebsiella aerogenes, and Shigella flexneri.
Collapse
|
3
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
4
|
Boontip T, Waditee-Sirisattha R, Honda K, Napathorn SC. Strategies for Poly(3-hydroxybutyrate) Production Using a Cold-Shock Promoter in Escherichia coli. Front Bioeng Biotechnol 2021; 9:666036. [PMID: 34150730 PMCID: PMC8211017 DOI: 10.3389/fbioe.2021.666036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The present study attempted to increase poly(3-hydroxybutyrate) (PHB) production by improving expression of PHB biosynthesis operon derived from Cupriavidus necator strain A-04 using various types of promoters. The intact PHB biosynthesis operon of C. necator A-04, an alkaline tolerant strain isolated in Thailand with a high degree of 16S rRNA sequence similarity with C. necator H16, was subcloned into pGEX-6P-1, pColdI, pColdTF, pBAD/Thio-TOPO, and pUC19 (native promoter) and transformed into Escherichia coli JM109. While the phaCA–04 gene was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that the cold-shock cspA promoter enhanced phaCA–04 protein expression and the chaperone function of TF play critical roles in increasing soluble phaCA–04 protein. Induction strategies and parameters in flask experiments were optimized to obtain high expression of soluble PhaCA–04 protein with high YP/S and PHB productivity. Soluble phaCA–04 was purified through immobilized metal affinity chromatography (IMAC). The results demonstrated that the soluble phaCA–04 from pColdTF-phaCABA–04 was expressed at a level of as high as 47.4 ± 2.4% of total protein and pColdTF-phaCABA–04 enhanced soluble protein formation to approximately 3.09−4.1 times higher than that from pColdI-phaCABA–04 by both conventional method and short induction method developed in this study. Cultivation in a 5-L fermenter led to PHB production of 89.8 ± 2.3% PHB content, a YP/S value of 0.38 g PHB/g glucose and a productivity of 0.43 g PHB/(L.h) using pColdTF-phaCABA–04. The PHB film exhibited high optical transparency and possessed Mw 5.79 × 105 Da, Mn 1.86 × 105 Da, and PDI 3.11 with normal melting temperature and mechanical properties.
Collapse
Affiliation(s)
- Thanawat Boontip
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Napathorn SC, Visetkoop S, Pinyakong O, Okano K, Honda K. Polyhydroxybutyrate (PHB) Production Using an Arabinose-Inducible Expression System in Comparison With Cold Shock Inducible Expression System in Escherichia coli. Front Bioeng Biotechnol 2021; 9:661096. [PMID: 34012957 PMCID: PMC8126650 DOI: 10.3389/fbioe.2021.661096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Cupriavidus necator strain A-04 has shown 16S rRNA gene identity to the well-known industrial strain C. necator H16. Nevertheless, the cell characteristics and polyhydroxyalkanoate (PHA) production ability of C. necator strain A-04 were different from those of C. necator H16. This study aimed to express PHA biosynthesis genes of C. necator strain A-04 in Escherichia coli via an arabinose-inducible expression system. In this study, the PHA biosynthesis operon of C. necator strain A-04, consisting of three genes encoding acetyl-CoA acetyltransferase (phaAA–04, 1182 bp, 40.6 kDa), acetoacetyl-CoA reductase (phaBA–04, 741 bp, 26.4 kDa) and PHB synthase Class I (phaCA–04, 1770 bp), was identified. Sequence analysis of the phaAA–04, phaBA–04, and phaCA–04 genes revealed that phaCA–04 was 99% similar to phaCH16 from C. necator H16. The difference in amino acid residue situated at position 122 of phaCA–04 was proline, whereas that of C. necator H16 was leucine. The intact phaCABA–04 operon was cloned into the arabinose-inducible araBAD promoter and transformed into E. coli strains Top 10, JM109 and XL-1 blue. The results showed that optimal conditions obtained from shaken flask experiments yielded 6.1 ± 1.1 g/L cell dry mass (CDM), a PHB content of 93.3 ± 0.9% (w/w) and a productivity of 0.24 g/(L⋅h), whereas the wild-type C. necator strain A-04 accumulated 78% (w/w) PHB with a productivity of 0.09 g/(L⋅h). Finally, for the scaled-up studies, fed-batch cultivations by pH-stat control in a 5-L fermenter of E. coli strains XL1-Blue harboring pBAD/Thio-TOPO-phaCABA–04 and pColdTF-phaCABA–04 in MR or LB medium, leading to a PHB production of 31.4 ± 0.9 g/L at 54 h with a PHB content of 83.0 ± 3.8% (w/w), a CDM of 37.8 ± 1.2 g/L, a YP/S value of 0.39 g PHB/g glucose and a productivity of 0.6 g PHB/(L⋅h) using pColdTF-phaCABA–04 in MR medium. In addition, PHB production was 29.0 ± 1.1 g/L with 60.2 ± 2.3% PHB content in the CDM of 53.1 ± 1.0 g/L, a YP/S value of 0.21 g PHB/g glucose and a productivity of 0.4 g PHB/(L⋅h) using pBAD/Thio-TOPO-phaCABA–04 in LB medium. Thus, a relatively high PHB concentration and productivity were achieved, which demonstrated the possibility of industrial production of PHB.
Collapse
Affiliation(s)
- Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathum Wan, Thailand.,Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathum Wan, Thailand.,International Center for Biotechnology, Osaka University, Suita, Japan
| | - Sirirat Visetkoop
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathum Wan, Thailand
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathum Wan, Thailand
| | - Kenji Okano
- International Center for Biotechnology, Osaka University, Suita, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Biosynthesis and characterization of poly(3-hydroxybutyrate-co-2-hydroxyalkanoate) with different comonomer fractions. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
High-cell density culture of poly(lactate-co-3-hydroxybutyrate)-producing Escherichia coli by using glucose/xylose-switching fed-batch jar fermentation. J Biosci Bioeng 2018; 127:721-725. [PMID: 30573386 DOI: 10.1016/j.jbiosc.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 11/23/2022]
Abstract
Poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] is produced in engineered Escherichia coli harboring the genes encoding an LA-polymerizing enzyme (LPE) and monomer-supplying enzymes. In this study, high cell-density fed-batch jar fermentation was developed using xylose and/or glucose as the carbon source. Fed-batch fermentation was initially performed with 20 g/L sugar during the batch phase for 24 h, and subsequent sugar feeding from 24 to 86 h. The feeding rate was increased in a stepwise manner. When xylose alone was used for cultivation, the cells produced the polymer at 11.6 g/L, which was higher than the 4.3 g/L obtained using glucose as the sole carbon source. However, in the first 24 h the growth in the glucose culture was greater than in the xylose culture. Based on these results, glucose was used for cell growth (at the initial stage) and xylose was used for polymer production (at the feeding stage). As expected, in the glucose/xylose switching fermentation method, polymer production was significantly enhanced, eventually reaching 26.7 g/L. The enhanced polymer production obtained by using xylose was presumably due to overflow metabolism. In fact, during xylose feeding, acetic acid excretion was greater than that in case of the glucose grown culture, suggesting the channeling of the metabolic flux from acetyl-CoA towards polymer production over into the tricarboxylic acid cycle in the xylose-fed cultures. Therefore, this sequential glucose/xylose feed strategy is potentially useful for production of acetyl-CoA derived compounds in E. coli.
Collapse
|
8
|
Shen R, Yin J, Ye JW, Xiang RJ, Ning ZY, Huang WZ, Chen GQ. Promoter Engineering for Enhanced P(3HB- co-4HB) Production by Halomonas bluephagenesis. ACS Synth Biol 2018; 7:1897-1906. [PMID: 30024739 DOI: 10.1021/acssynbio.8b00102] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Promoters for the expression of heterologous genes in Halomonas bluephagenesis are quite limited, and many heterologous promoters function abnormally in this strain. Pporin, a promoter of the strongest expressed protein porin in H. bluephagenesis, is one of the few promoters available for heterologous expression in H. bluephagenesis, yet it has a fixed transcriptional activity that cannot be tuned. A stable promoter library with a wide range of activities is urgently needed. This study reports an approach to construct a promoter library based on the Pporin core region, namely, from the -35 box to the transcription start site, a spacer and an insulator. Saturation mutagenesis was conducted inside the promoter core region to significantly increase the diversity within the promoter library. The promoter library worked in both E. coli and H. bluephagenesis, covering a wide range of relative transcriptional strengths from 40 to 140 000. The library is therefore suitable for the transcription of many different heterologous genes, serving as a platform for protein expression and fine-tuned metabolic engineering of H. bluephagenesis TD01 and its derivative strains. H. bluephagenesis strains harboring the orfZ gene encoding 4HB-CoA transferase driven by selected promoters from the library were constructed, the best one produced over 100 g/L cell dry weight containing 80% poly(3-hydroxybutyrate- co-11 mol % 4-hydroxybutyrate) with a productivity of 1.59 g/L/h after 50 h growth under nonsterile fed-batch conditions. This strain was found the best for P(3HB- co-4HB) production in the laboratory scale.
Collapse
Affiliation(s)
- Rui Shen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin Yin
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian-Wen Ye
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Zhi-Yu Ning
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wu-Zhe Huang
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass. Appl Microbiol Biotechnol 2018; 102:2693-2707. [DOI: 10.1007/s00253-018-8806-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/20/2023]
|
10
|
Tsuge T. Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym J 2016. [DOI: 10.1038/pj.2016.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Millán M, Segura D, Galindo E, Peña C. Molecular mass of poly-3-hydroxybutyrate (P3HB) produced by Azotobacter vinelandii is determined by the ratio of synthesis and degradation under fixed dissolved oxygen tension. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
A study on the relation between poly(3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16. J Biotechnol 2016; 227:94-102. [DOI: 10.1016/j.jbiotec.2016.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/23/2023]
|
13
|
Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J Biotechnol 2014; 180:52-65. [DOI: 10.1016/j.jbiotec.2014.03.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
14
|
Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y, Tanaka K, Saito K, Hirai MY. Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 2013; 20:525-35. [PMID: 23861321 PMCID: PMC3859321 DOI: 10.1093/dnares/dst028] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Because cyanobacteria directly harvest CO2 and light energy, their carbon metabolism is important for both basic and applied sciences. Here, we show that overexpression of the sigma factor sigE in Synechocystis sp. PCC 6803 widely changes sugar catabolism and increases production of the biodegradable polyester polyhydroxybutyrate (PHB) during nitrogen starvation. sigE overexpression elevates the levels of proteins implicated in glycogen catabolism, the oxidative pentose phosphate pathway, and polyhydroxyalkanoate biosynthesis. PHB accumulation is enhanced by sigE overexpression under nitrogen-limited conditions, yet the molecular weights of PHBs synthesized by the parental glucose-tolerant and sigE overexpression strain are similar. Although gene expression induced by nitrogen starvation is changed and other metabolites (such as GDP-mannose and citrate) accumulate under sigE overexpression, genetic engineering of this sigma factor altered the metabolic pathway from glycogen to PHB during nitrogen starvation.
Collapse
Affiliation(s)
- Takashi Osanai
- 1RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hiroe A, Ushimaru K, Tsuge T. Characterization of polyhydroxyalkanoate (PHA) synthase derived from Delftia acidovorans DS-17 and the influence of PHA production in Escherichia coli. J Biosci Bioeng 2013; 115:633-8. [DOI: 10.1016/j.jbiosc.2012.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
16
|
Kedia G, Passanha P, Dinsdale RM, Guwy AJ, Lee M, Esteves SR. Addressing the challenge of optimum polyhydroxyalkanoate harvesting: monitoring real time process kinetics and biopolymer accumulation using dielectric spectroscopy. BIORESOURCE TECHNOLOGY 2013; 134:143-150. [PMID: 23500571 DOI: 10.1016/j.biortech.2013.01.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
In this study, dielectric spectroscopy was utilised to evaluate and define the optimum harvesting time for polyhydroxyalkanoates (PHA) production. It is essential to harvest PHA at the optimum time during fermentation for maximum yield, otherwise cells start degrading. Two carbon sources (acetic and butyric acids) were used in laboratory based experiments and a number of samples were measured ex situ for PHA production. The real-time measured capacitance in addition of identifying the cells growth phase, it correlated very well with ex situ measured PHA produced within the cells. The probe has proven to be a useful tool to assess process kinetics, to monitor real-time cell growth, PHA produced and defining the optimum harvesting time.
Collapse
Affiliation(s)
- Gopal Kedia
- Sustainable Environment Research Centre, Faculty of Health, Sport and Science, University of Glamorgan, Pontypridd CF37 1DL, Wales, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 2012; 78:3177-84. [PMID: 22344649 DOI: 10.1128/aem.07715-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] [UHMW-P(3HB)] synthesized by genetically engineered Escherichia coli is an environmentally friendly bioplastic material which can be processed into strong films or fibers. An operon of three genes (organized as phaCAB) encodes the essential proteins for the production of P(3HB) in the native producer, Ralstonia eutropha. The three genes of the phaCAB operon are phaC, which encodes the polyhydroxyalkanoate (PHA) synthase, phaA, which encodes a 3-ketothiolase, and phaB, which encodes an acetoacetyl coenzyme A (acetoacetyl-CoA) reductase. In this study, the effect of gene order of the phaCAB operon (phaABC, phaACB, phaBAC, phaBCA, phaCAB, and phaCBA) on an expression plasmid in genetically engineered E. coli was examined in order to determine the best organization to produce UHMW-P(3HB). The results showed that P(3HB) molecular weights and accumulation levels were both dependent on the order of the pha genes relative to the promoter. The most balanced production result was achieved in the strain harboring the phaBCA expression plasmid. In addition, analysis of expression levels and activity for P(3HB) biosynthesis enzymes and of P(3HB) molecular weight revealed that the concentration of active PHA synthase had a negative correlation with P(3HB) molecular weight and a positive correlation with cellular P(3HB) content. This result suggests that the level of P(3HB) synthase activity is a limiting factor for producing UHMW-P(3HB) and has a significant impact on P(3HB) production.
Collapse
|
18
|
Tomizawa S, Saito Y, Hyakutake M, Nakamura Y, Abe H, Tsuge T. Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent. Appl Microbiol Biotechnol 2010; 87:1427-35. [DOI: 10.1007/s00253-010-2601-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/31/2010] [Accepted: 04/04/2010] [Indexed: 11/29/2022]
|
19
|
Wei XX, Shi ZY, Yuan MQ, Chen GQ. Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl Microbiol Biotechnol 2009; 82:703-12. [DOI: 10.1007/s00253-008-1816-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/05/2008] [Accepted: 12/07/2008] [Indexed: 11/30/2022]
|
20
|
Tsuge T, Watanabe S, Shimada D, Abe H, Doi Y, Taguchi S. Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol Lett 2008; 277:217-22. [PMID: 18031343 DOI: 10.1111/j.1574-6968.2007.00958.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aeromonas caviae polyhydroxyalkanoate synthase (PhaC(Ac)) is an important biocatalyst for the synthesis of practically useful two-component polyhydroxyalkanoate copolymer, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. In a previous study, two PhaC(Ac) mutants that have a single amino acid substitution of either asparagine 149 by serine (N149S) or aspartate 171 by glycine (D171G) were isolated as higher active enzymes by means of evolutionary engineering. In this study, the synergistic effects of N149S and D171G double mutation (NSDG) in PhaC(Ac) on polyhydroxyalkanoate biosynthesis were investigated in recombinant Ralstonia eutropha. The PhaC(Ac) NSDG mutant showed enhanced incorporation of longer 3-hydroxyalkanoate (3HA) units into the polyhydroxyalkanoate copolymer from octanoate (3HA fraction: 18.5 mol%) and soybean oil (5.4 mol%) as a carbon source. Besides, the NSDG mutant synthesized P(3HB) homopolymer with a very high molecular weight (M(w)=368 x 10(4)) when fructose was used as a carbon source. Thus, a combination of the beneficial mutations synergistically altered enzymatic properties, leading to synthesis of a polyhydroxyalkanoate copolymer with enhanced 3HA fraction and increased molecular weight.
Collapse
|
21
|
Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 2007; 102:1437-49. [PMID: 17578408 DOI: 10.1111/j.1365-2672.2007.03335.x] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various bacterial species accumulate intracellular polyhydroxyalkanoates (PHAs) granules as energy and carbon reserves inside their cells. PHAs are biodegradable, environmentally friendly and biocompatible thermoplastics. Varying in toughness and flexibility, depending on their formulation, they can be used in various ways similar to many nonbiodegradable petrochemical plastics currently in use. They can be used either in pure form or as additives to oil-derived plastics such as polyethylene. However, these bioplastics are currently far more expensive than petrochemically based plastics and are therefore used mostly in applications that conventional plastics cannot perform, such as medical applications. PHAs are immunologically inert and are only slowly degraded in human tissue, which means they can be used as devices inside the body. Recent research has focused on the use of alternative substrates, novel extraction methods, genetically enhanced species and mixed cultures with a view to make PHAs more commercially attractive.
Collapse
Affiliation(s)
- R A J Verlinden
- School of Applied Sciences, University of Wolverhampton, Wolverhampton, UK
| | | | | | | | | |
Collapse
|