1
|
Song X, Lv HB, Shi MM, Shao ZB, Wang YZ. Calcium gluconate-based flame retardant towards simultaneously high-efficiency fire safety and mechanical enhancement for epoxy resin. Int J Biol Macromol 2024; 264:130409. [PMID: 38417750 DOI: 10.1016/j.ijbiomac.2024.130409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Flame retardants containing biomass receive growing interest in environmental friendliness and sustainability but usually face the low flame-retardant efficiency and deterioration on mechanical property of matrix. Herein, a calcium gluconate-based flame retardant (CG@APP) was chemically prepared using calcium gluconate (CG) and ammonium polyphosphate (APP) via ion exchange reaction, and enabled the excellent fire safety and mechanical enhancement for epoxy resin (EP). The resulted EP composites containing 6 wt% CG@APP (EP/CG@APP6) exhibited V-0 ratings in UL-94 test. Furthermore, with respect to EP/APP6, the peak of heat release rate (pHRR) and peak of smoke production rate (pSPR) of EP/CG@APP6 decreased by 70.5 % and 50.0 %, respectively. The well synergistic flame-retardant mechanism of CG@APP between gaseous and solid phases was revealed to generate denser and more continuous charring residuals, which could do well work on insulation for heat transfer and fuel diffusion. In addition, the shell rich in hydroxyl group and Ca2+ on the surface of CG@APP well enhanced the interface compatibility through the hydrogen bond and coordinated bond, thus the tensile strength, flexural strength and impact strength of EP/CG@APP6 increased by 18.2 %, 4.5 % and 9.1 % compared with pure EP, respectively. This work provided a simple and sustainable way to construct excellent fire-safety composites.
Collapse
Affiliation(s)
- Xiang Song
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Hong-Bin Lv
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Miao-Miao Shi
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Zhu-Bao Shao
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Xing C, Zheng X, Deng T, Zeng L, Liu X, Chi X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023; 15:pharmaceutics15051536. [PMID: 37242778 DOI: 10.3390/pharmaceutics15051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.
Collapse
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoming Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Deng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xin Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xinjin Chi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Zhang X, Yang Y, Li M, Wu J, Zhu Z, Bi C, Xie Y, Wang T, Sun Y, Yin J, Xie Z, Liu F, Wang J, Yang J. Modified β-cyclodextrin microspheres towards the application in intumescent fire resistance and smoke-suppressing of bio-based poly(L-lactic acid). Int J Biol Macromol 2023; 234:123666. [PMID: 36801221 DOI: 10.1016/j.ijbiomac.2023.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
In this work, the β-cyclodextrin (β-CD) was modified by a phosphazene compound to prepare a novel amorphous derivate (β-CDCP), which was combined with the ammonium polyphosphate (APP) as a synergistic flame retardant (FR) of the bio-based poly(L-lactic acid) (PLA). The effects of the APP/β-CDCP on the thermal stability, combustion behavior, pyrolysis process, fire resistance performance and crystallizability of the PLA were investigated comprehensively and in depth by thermogravimetric (TG) analysis, limited oxygen index (LOI) analysis, UL-94 test, cone calorimetry measurement, TG-infrared (TG-IR), scanning electron microscopy-energy dispersive spectrometer, Raman spectroscopy, pyrolysis-gas chromatography/mass spectrometry and differential scanning calorimetry. The PLA/5%APP/10%β-CDCP showed a highest LOI of 33.2 %, passed V-0 rating and exhibited self-extinguish phenomenon in the UL-94 test. Also, it presented a lowest peak of heat release rate, total heat release, peak of smoke production rate and total smoke release, and a highest char yield treated by cone calorimetry analysis. In addition, the 5%APP/10%β-CDCP shortened significantly crystallization time and enhanced crystallization rate of the PLA. Gas phase and intumescent condensed phase fire proofing mechanisms are proposed to elucidate enhanced fire resistance in this system in detail.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Yubin Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Meitong Li
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Jingxuan Wu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Zhe Zhu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Chengliang Bi
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Yuhong Xie
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Taoyun Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Yongyan Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China.
| | - Jing Yin
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Zhanghua Xie
- Tianjin Nengpu Science and Technology Co., Ltd, Huading New Area 1-2-10, Haitai Inovation 6 Road, Huayuan Industrial Park, Tianjin 300384, China
| | - Fude Liu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China.
| | - Junsheng Wang
- Tianjin Fire Research Institute of the Ministry of Emergency Management, Tianjin 300381, China.
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Wang H, Liu Q, Li H, Zhang H, Yan S. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite. Polymers (Basel) 2023; 15:polym15051284. [PMID: 36904525 PMCID: PMC10006967 DOI: 10.3390/polym15051284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
A liquid-phosphorus-containing polyester diol, PPE, was prepared via condensation polymerization using commercial reactive flame retardant 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10-phospha-phenanthrene-10-oxide, adipic acid, ethylene glycol, and 1,4-butanediol. PPE and/or expandable graphite (EG) were then incorporated into phosphorus-containing flame-retardant polyester-based flexible polyurethane foams (P-FPUFs). The structure and properties of the resultant P-FPUFs were characterized using scanning electron microscopy tensile measurements, limiting oxygen index (LOI), vertical burning tests, cone calorimeter tests, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Unlike the FPUF prepared using regular polyester polyol (R-FPUF), PPE increased the flexibility and elongation at break of the resultant forms. More importantly, the peak heat release rate (PHRR) and total heat release (THR) of P-FPUF were reduced by 18.6% and 16.3%, respectively, via gas-phase-dominated flame-retardant mechanisms, compared with those of R-FPUF. The addition of EG further reduced the peak smoke production release (PSR) and total smoke production (TSP) of the resultant FPUFs while increasing the LOI and char formation. Interestingly, it was observed that EG noticeably improved the residual quantity of phosphorus in the char residue. When the EG loading was 15 phr, the resulting FPUF (P-FPUF/15EG) attained a high LOI value (29.2%) and exhibited good anti-dripping performance. Meanwhile, the PHRR, THR, and TSP of P-FPUF/15EG were significantly decreased by 82.7%, 40.3%, and 83.4%, respectively, compared with those of P-FPUF. This superior flame-retardant performance can be attributed to the combination of the bi-phase flame-retardant behavior of PPE and condensed-phase flame-retardant characteristics of EG.
Collapse
Affiliation(s)
| | - Qiang Liu
- Correspondence: (Q.L.); (H.L.); (S.Y.)
| | - Hui Li
- Correspondence: (Q.L.); (H.L.); (S.Y.)
| | | | | |
Collapse
|
5
|
Aydoğan B, Usta N. Effects of dolomite and intumescent flame retardant additions on thermal and combustion behaviors of rigid polyurethane foams. J Appl Polym Sci 2023. [DOI: 10.1002/app.53739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Bilal Aydoğan
- Ship Construction Department, Maritime Vocational High School Bandırma Onyedi Eylül University Balıkesir Turkey
| | - Nazim Usta
- Energy Division, Mechanical Engineering Department Pamukkale University Denizli Turkey
| |
Collapse
|
6
|
Xu Y, Wang B, Guo Z, Fang Z, Chen P, Li J. Effect of a bio-based copolymer containing lysine, dopamine and triazine on flame retardancy and mechanical properties of thermoplastic polyurethane/ammonium polyphosphate. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
7
|
Muhammed Raji A, Hambali HU, Khan ZI, Binti Mohamad Z, Azman H, Ogabi R. Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review. J CELL PLAST 2022. [DOI: 10.1177/0021955x221144564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Owing to the superior thermal insulating attributes of rigid polyurethane foam (RPUF) compared to other insulating materials (expanded and extruded polystyrene, mineral wool), it remains the most dominant insulating material and most studied polymer foam. Like other polyurethane foam, RPUF is highly flammable, necessitating the incorporation of flame retardants (FR) during production to lower combustibility, promoting its continuous use as insulation material in construction, transportation, and others. The popular approaches for correcting the high flammability of RPUF are copolymerization and blending (with FR). The second method has proven to be most effective as there are limited trade-offs in RPUF properties. Meanwhile, the high flammability of RPUF is still a significant hindrance in emerging applications (sensors, space travel, and others), and this has continuously inspired research in the flame retardancy of RPUF. In this study, properties, and preparation methods of RPUF are described, factors responsible for the high flammability of PUF are discussed, and flame retardancy of RPUF is thoroughly reviewed. Notably, most FR for RPUF are inorganic nanoparticles, lignin, intumescent FR systems of expandable graphite (EG), ammonium polyphosphate (APP), and hybridized APP or EG with other FR. These could be due to their ease of processing, low cost, and being environmentally benign. Elaborate discussion on RPUF FR mechanisms were also highlighted. Lastly, a summary and future perspectives in fireproofing RPUF are provided, which could inspire the design of new FR for RPUF.
Collapse
Affiliation(s)
- Abdulwasiu Muhammed Raji
- Enhanced Polymer Research Group, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
- Department of Polymer and Textile Technology, Yaba College of Technology, Lagos, Nigeria
| | - Hambali Umar Hambali
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Zahid Iqbal Khan
- Enhanced Polymer Research Group, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Zurina Binti Mohamad
- Enhanced Polymer Research Group, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hassan Azman
- Enhanced Polymer Research Group, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Raphael Ogabi
- INSA Center Val de Loire, University Orleans, Bourges, France
| |
Collapse
|
8
|
Transparent, flame retardant, mechanically strengthened and low dielectric EP composites enabled by a reactive bio-based P/N flame retardant. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Piao J, Ren J, Wang Y, Feng T, Wang Y, Lu M, Jiao C, Chen X. Green biobased P‐N coating: Towards waste‐minimization flame retardant flexible polyurethane foam. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junxiu Piao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Jinyong Ren
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Yaofei Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Tingting Feng
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Yaxuan Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Mingjie Lu
- State Key Laboratory of Petroleum Pollution Control China University of Petroleum (East China) Qingdao Shandong People's Republic of China
| | - Chuanmei Jiao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Xilei Chen
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| |
Collapse
|
10
|
Qiu Y, Xi B, Qian L, Liu A, Gao L. Carbonization‐dominated synergistic behaviors of ammonium hypophosphite/
EG
composite in improving flame retardancy of flexible polyurethane foam. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yong Qiu
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing Technology and Business University Beijing China
| | - Baoan Xi
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing Technology and Business University Beijing China
| | - Lijun Qian
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing Technology and Business University Beijing China
| | - Anqi Liu
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing Technology and Business University Beijing China
| | - Lun‐Bagen Gao
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing Technology and Business University Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing Technology and Business University Beijing China
| |
Collapse
|
11
|
Lee PS, Jung SM. Flame retardancy of polyurethane foams prepared from green polyols with flame retardants. J Appl Polym Sci 2022. [DOI: 10.1002/app.52010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pyung Soo Lee
- Department of Chemical Engineering and Material Science Chung‐Ang University Seoul South Korea
- Department of Intelligent Energy and Industry Chung‐Ang University Seoul South Korea
| | - Simon MoonGeun Jung
- Green Carbon Research Center Korea Research Institute of Chemical Technology Daejeon South Korea
| |
Collapse
|
12
|
Wang YC, Kou X, Deng J, Zhao JP, Shi H. Photo‐aging deterioration of hybrid intumescent flame retarding coatings simultaneously modified by silicon aerogel, β‐cyclodextrin, and
nano‐ZnO. J Appl Polym Sci 2022. [DOI: 10.1002/app.52026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ya Chao Wang
- School of Resources Engineering Xi'an University of Architecture & Technology Xi'an China
- State Key Lab of Subtropical Building Science South China University of Technology Guangzhou China
- School of Safety Science and Engineering Xi'an University of Science & Technology Xi'an China
| | - Xiaofei Kou
- School of Resources Engineering Xi'an University of Architecture & Technology Xi'an China
| | - Jun Deng
- School of Safety Science and Engineering Xi'an University of Science & Technology Xi'an China
| | - Jiang Ping Zhao
- School of Resources Engineering Xi'an University of Architecture & Technology Xi'an China
| | - Hongxing Shi
- State Key Lab of Nuclear, Biological and Chemical Disaster Protection Research Institute of Chemical Defense Beijing China
| |
Collapse
|
13
|
Decsov KE, Ötvös B, Marosi G, Bocz K. Microfibrous cyclodextrin boosts flame retardancy of poly(lactic acid) II Phosphorous silane treatment further enhances the effectivity. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Song RH, Liu ZH, Geng X, Ye L, Zhang AY, Feng ZG. Preparation and characterization of cross-linked polyurethanes using β-CD [3]PR as slide-ring cross-linker. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Jia P, Ma C, Lu J, Yang W, Jiang X, Jiang G, Yin Z, Qiu Y, Qian L, Yu X, Hu Y, Hu W, Wang B. Design of copper salt@graphene nanohybrids to accomplish excellent resilience and superior fire safety for flexible polyurethane foam. J Colloid Interface Sci 2022; 606:1205-1218. [PMID: 34492459 DOI: 10.1016/j.jcis.2021.08.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/14/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Flexible polyurethane foam (FPUF) is the most commonly used polyurethane, but its highly flammable characteristics makes it ignite easily and release a lot of heat and toxic gases. Here, the effect of different forms of copper salt modified graphene (rGO@CuO, rGO@Cu2O and rGO@CSOH) on improving the fire protection efficiency and mechanical property of FPUF is explored. Hybrid FPUF is characterized by thermogravimetric analysis (TGA), cone calorimeter, thermogravimetric analysis/Fourier transform infrared spectroscopy (TG-IR), tension, compression, and falling ball rebound testing. Compared with pure FPUF, the FPUF/rGO@CSOH show a significant decreasement in reducing the heat release of FPUF, the PHRR and THR are reduced by 36.9% and 29.4%, respectively. While the FPUF/rGO@Cu2O demonstrate excellent smoke and toxic gases suppression in FPUF, the PSPR and TSR are reduced by 24.6% and 51.9%, and the COP and COY are also reduced by 51.9% and 55.3%, respectively. After adding the copper salt hybrid, the buffering performance of FPUF did not change. Fortunately, the tensile and compressive strength increase obviously. The flame retardant and smoke suppression mechanism of hybrid FPUF has also been studied. This article gives a effective strategy for the preparation of FPUF with outstanding mechanical property, flame retardant and smoke suppression properties.
Collapse
Affiliation(s)
- Pengfei Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Chao Ma
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Jingyi Lu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Wenhao Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xin Jiang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Guangyong Jiang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Zhenting Yin
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Yong Qiu
- Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Lijun Qian
- Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Xiaoli Yu
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
16
|
Wang Y, Deng J, Zhao J, Shi H. Deterioration mechanism on flame retardancy of aliphatic waterborne polyurethane-based hybrid coatings under ultraviolet radiation: Experiment and pyrolysis kinetics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Dong F, Wang Y, Wang S, Shaghaleh H, Sun P, Huang X, Xu X, Wang S, Liu H. Flame-retarded polyurethane foam conferred by a bio-based nitrogen‑phosphorus-containing flame retardant. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Feng JF, Tan M, Zhang S, Li BJ. Recent Advances of Porous Materials Based on Cyclodextrin. Macromol Rapid Commun 2021; 42:e2100497. [PMID: 34608701 DOI: 10.1002/marc.202100497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Porous materials have attracted significant attention because of their rising applications in many fields. Cyclodextrins (CDs) are suitable building units in the fabrication of porous materials owing to their intrinsic nanoporous structure, easy modification, and biocompatibility, which may result in the formation of CD-based organic frameworks (including cyclodextrin metal-organic frameworks (CD-MOFs) and cyclodextrin covalent organic frameworks (CD-COFs)), and CD-based polymer hybrid porous materials. This review focuses on the recent progress in the fabrication and applications of CD-based porous materials with novel structures and functionalities.
Collapse
Affiliation(s)
- Jun-Feng Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065, China
| | - Min Tan
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, 610065, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065, China
| | - Bang-Jing Li
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, 610065, China
| |
Collapse
|
19
|
Ye G, Huo S, Wang C, Shi Q, Liu Z, Wang H. One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid). Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Qi J, Pan Y, Luo Z, Wang B. Facile and scalable fabrication of bioderived flame retardant based on adenine for enhancing fire safety of fully biodegradable
PLA
/
PBAT
/
TPS
ternary blends. J Appl Polym Sci 2021. [DOI: 10.1002/app.50877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juan Qi
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou China
| | - Yingtong Pan
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou China
| | - Zhonglin Luo
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou China
| | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou China
| |
Collapse
|
21
|
|
22
|
Facile synthesis of phytic acid and aluminum hydroxide chelate-mediated hybrid complex toward fire safety of ethylene-vinyl acetate copolymer. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Baguian AF, Ouiminga SK, Longuet C, Caro-Bretelle AS, Corn S, Bere A, Sonnier R. Influence of Density on Foam Collapse under Burning. Polymers (Basel) 2020; 13:E13. [PMID: 33375196 PMCID: PMC7793110 DOI: 10.3390/polym13010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023] Open
Abstract
The fire behaviour of flexible polyurethane foams was studied using a cone calorimeter, with a special emphasis on the collapse step. Only one peak of heat release rate, ranging from 200 to 450 kW/m2, is observed for thin foams, depending on the foam density and the heat flux. On the contrary, heat release rate (HRR) curves exhibit two peaks for 10 cm-thick foams, the second one corresponding to the pool fire formed after foam collapse. In all cases, the collapse occurs at a constant rate through the whole thickness. The rate of the recession of the front was calculated using digital and infrared cameras. Interestingly, its value is relatively constant whatever the heat flux (especially between 25 and 35 kW/m2), probably because of the very low heat conductivity preventing heat transfer through the thickness. The rate increases for the lightest foam but the fraction of burnt polymer during collapse is constant. Therefore, the pool fire is more intense for the densest foam. A simple macroscopic model taking into account only the heat transfer into the foam leads to much lower front recession rates, evidencing that the collapse is piloted by the cell walls' rigidity.
Collapse
Affiliation(s)
- Abdoul Fayçal Baguian
- Laboratoire de Physique et de Chimie de l’Environnement, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (A.F.B.); (S.K.O.); (A.B.)
| | - Salifou Koucka Ouiminga
- Laboratoire de Physique et de Chimie de l’Environnement, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (A.F.B.); (S.K.O.); (A.B.)
| | - Claire Longuet
- IMT—Mines Ales, Polymers Hybrids and Composites (PCH), 6 Avenue De Clavières, F-30319 Alès CEDEX, France;
| | - Anne-Sophie Caro-Bretelle
- LMGC, IMT Mines Ales, Université Montpellier, CNRS, F-30319 Alès CEDEX, France; (A.-S.C.-B.); (S.C.)
| | - Stéphane Corn
- LMGC, IMT Mines Ales, Université Montpellier, CNRS, F-30319 Alès CEDEX, France; (A.-S.C.-B.); (S.C.)
| | - Antoine Bere
- Laboratoire de Physique et de Chimie de l’Environnement, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (A.F.B.); (S.K.O.); (A.B.)
| | - Rodolphe Sonnier
- IMT—Mines Ales, Polymers Hybrids and Composites (PCH), 6 Avenue De Clavières, F-30319 Alès CEDEX, France;
| |
Collapse
|