1
|
Wang L, Hemmatpour H, Rudolf P, Gerlach D, Euverink GJ, Picchioni F. Swollen hydrogels with strong mechanical characteristics: A superior adsorbent for the sustainable removal of diclofenac sodium. J Colloid Interface Sci 2025; 686:754-763. [PMID: 39922165 DOI: 10.1016/j.jcis.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Hydrogel adsorbents that possess both good mechanical strength and adsorption capabilities are crucial for practical wastewater treatment. However, achieving this balance has been demanding due to the trade-off between swelling properties and adsorption capacities in hydrogels. Although swelling increases the availability of functional groups and facilitates the diffusion of pollutants, it compromises the mechanical integrity. In this study, we address this challenge by developing double-network hydrogels based on poly(vinyl) alcohol and poly[2-(acryloyloxy)ethyl]trimethyl ammonium chloride, prepared via free-radical polymerization, and subsequent freeze-thaw treatment. These hydrogels were investigated for their efficacy in removing diclofenac sodium, a prevalent drug pollutant in pharmaceutical wastewater. By leveraging the synergistic effect of the physical and chemical networks, the prepared hydrogels exhibit intrinsic toughness and compressibility even in a fully swollen state. Most importantly, the maximum adsorption capacity yielded by the Langmuir model fitting was 1012 mg/g under natural conditions, they surpass all other hydrogel adsorbents proposed so far. Thermodynamic analysis implied the spontaneous and exothermic nature of diclofenac sodium adsorption process, while infrared and photoemission spectroscopy revealed that diclofenac sodium uptake is predominantly governed by ion exchange. Overall, double-network hydrogels offer considerable promise for eco-friendly and sustainable wastewater purification due to their high mechanical stability, outstanding adsorption performance, good reusability, and adaptability to diverse environmental conditions.
Collapse
Affiliation(s)
- Lin Wang
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, 9747AG Groningen, the Netherlands.
| | - Hamoon Hemmatpour
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| | - Dominic Gerlach
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| | - Gert JanWillem Euverink
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, 9747AG Groningen, the Netherlands.
| | - Francesco Picchioni
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, 9747AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Dastjani-Farahani R, Asadzadeh N, Jafari A, Vafaie-Sefti M, Baghban-Salehi M. Enhancing xanthan hydrogels for water shutoff treatment in sandstone oil reservoirs through core flooding and CCD approach. Sci Rep 2025; 15:14016. [PMID: 40269086 PMCID: PMC12019567 DOI: 10.1038/s41598-025-98957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
This study examines the efficacy of xanthan gum, as a natural polymer, in creating a suitable hydrogel for controlling water production in reservoirs. The study employed the Central Composite Design (CCD) method through bottle tests to evaluate the effect of different compounds on the gelation time and duration of syneresis. To explore the effectiveness of the xanthan-based hydrogels, swelling tests as well as dynamic core flooding tests are performed. Additionally, to enlighten the performance of the xanthan hydrogels, comprehensive set of characterization tests are performed. Nevertheless, the swelling test results indicated that increasing the polymer concentration led to an increase in swelling. SEM images of the dried hydrogel confirmed the structural integrity and uniformity of the networked architecture, demonstrating an increase in thickness and density. Furthermore, four hydrogel samples with the most appropriate specification in the bottle and swelling tests were chosen for core flooding tests. The results demonstrated that injecting the sample including; polymer@8000ppm, crosslinking agent ratio@0.15, and nanosilica@0.05 wt%, as an optimal sample, caused a 71.9% decrease in water production. Finally, the residual factor of 2.289, indicated the effective efficiency of xanthan-chromium hydrogel in the presence of nanosilica to reduce water permeability compared to oil in sandstone reservoir.
Collapse
Affiliation(s)
| | - Naser Asadzadeh
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Arezou Jafari
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | | | - Mahsa Baghban-Salehi
- Petroleum Engineering Department, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
3
|
Abdul Sattar OD, Khalid RM, Yusoff SFM. Eco-friendly natural rubber-based hydrogel loaded with nano-fertilizer as soil conditioner and improved plant growth. Int J Biol Macromol 2024; 280:135555. [PMID: 39276881 DOI: 10.1016/j.ijbiomac.2024.135555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
This study addresses the dual challenge of agricultural cost and waste management by harnessing agrarian waste to produce nano-fertilizers (NF) to enhance crop yield while mitigating environmental impacts. Recognizing the limitations of traditional hydrogels' non-biodegradability and their inability to sustain root zone moisture and nutrient levels, we developed an LNR/AAc/pectin hydrogel. This innovative hydrogel offers a viable solution that provides a consistent NF supply and improves water retention efficiently. Additionally, we utilized Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and thermogravimetric analysis (TGA) to analyze the hydrogel's structure, stability, and form. Transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF) were employed to ascertain the NF concentration. The optimization of the hydrogel's swelling and NF release was conducted through a 5-level, 2-factor Response Surface Methodology (RSM), focusing on the effects of the AAc: LNR ratio and pectin weight while maintaining constant concentrations of potassium persulfate (KPS) and MBA. Results revealed a high correlation between predicted and experimental values, with determination coefficients (R2) of 0.9982 for swelling and 0.9979 for NF release. Furthermore, the hydrogel exhibited a 96.30 % biodegradation rate after 120 days of soil burial. Our findings demonstrate the hydrogels' potential to significantly impact farming and gardening by ensuring a sustainable supply of nutrients to enhance soil moisture retention.
Collapse
Affiliation(s)
- Omar D Abdul Sattar
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Department of Chemistry, College of Sciences, University of Diyala, Iraq
| | - Rozida Mohd Khalid
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Centre (PORCE), Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Siti Fairus M Yusoff
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Centre (PORCE), Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Ye Z, Jiang Y, Fan W, Zhang X, Wu P. Photosensitized Reduction and Polymerization for One-Step Preparation of Leucomethylene Blue Hydrogel as a Visual Indicator for Both Gaseous and Dissolved Oxygen. Anal Chem 2024; 96:14441-14447. [PMID: 39193901 DOI: 10.1021/acs.analchem.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Oxygen is crucial for many chemical and biological processes, and its facile detection is of great significance in our daily lives. In this study, we report a leucomethylene blue (LMB)-encapsulated hydrogel visual indicator for the detection of both gaseous and dissolved Oxygen (DO). The photosensitization of methylene blue (MB) not only lead to its reduction to colorless LMB but also resulted in hydrogel polymerization, thus allowing the one-step preparation of the LMB-hydrogel. Meanwhile, the photosensitized reduction of MB was quite fast (5000-fold faster than the classical glucose reduction). In this manner, the blue color of MB could be completely decayed within only 1 min. Also, the efficient polymerization triggered by MB photosensitization ensured the rapid preparation of LMB hydrogels within 10 min. By placing the oxygen indicator in air or water, oxygen can specifically oxidize the colorless LMB-hydrogel to the blue MB-hydrogel. When coupled with a smartphone, the oxygen indicator exhibited a linear response to DO in the range 0.23-10 mg/L with a detection limit of 0.077 mg/L. The LMB-hydrogel indicator was successfully explored for visual evaluation of vacuum degree during food packaging. The LMB-hydrogel, with the advantages of low cost, ease of preparation, as well as facile use, is a promising visual indicator for both gaseous and dissolved oxygen, especially for in-house usage.
Collapse
Affiliation(s)
- Ziyi Ye
- State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yujiao Jiang
- State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Wentong Fan
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xinfeng Zhang
- State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Peng Wu
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
5
|
Whba R, Su'ait MS, Whba F, Sahinbay S, Altin S, Ahmad A. Intrinsic challenges and strategic approaches for enhancing the potential of natural rubber and its derivatives: A review. Int J Biol Macromol 2024; 276:133796. [PMID: 39004255 DOI: 10.1016/j.ijbiomac.2024.133796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Natural rubber (NR) and its derivatives play indispensable roles in various industries due to their unique properties and versatile applications. However, the widespread utilization of NR faces intrinsic challenges such as limited mechanical strength, poor resistance to heat and organic solvent, poor electrical conductivity, and low compatibility with other materials, prompting researchers to explore enhancing its performance. Modified NRs (MNRs) like cyclization, deproteinization, chlorination, epoxidation, or grafting NR demonstrated a few enhanced merits compared to NR. However, various strategies, such as blending, vulcanization, crosslinking, grafting, plasticization, reinforcement, and nanostructuring, overcame most drawbacks. This review comprehensively examines these challenges and delves into the modification strategies employed to enhance the properties and expand the applications of NR and its derivatives. Furthermore, the review explores future visions for the NR industry, emphasizing integrating advanced modification techniques, adopting sustainable practices, and promoting circular economy principles. By elucidating the inherent challenges, outlining effective modification strategies, and envisioning future trajectories, this review provides valuable insights for stakeholders seeking to navigate and contribute to the sustainable development of the NR sector.
Collapse
Affiliation(s)
- Rawdah Whba
- Department of Chemistry, Faculty of Applied Sciences, Taiz University, 6803 Taiz, Yemen; Department of Engineering Physics, Istanbul Medeniyet University, 34700 Istanbul, Türkiye.
| | - Mohd Sukor Su'ait
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Fathyah Whba
- Department of Physics, Faculty of Applied Sciences, Taiz University, 6803 Taiz, Yemen
| | - Sevda Sahinbay
- Istanbul Technical University, Physics Department, Bebek, Istanbul, Türkiye
| | - Serdar Altin
- Physics Department, Inonu University, Malatya, Türkiye
| | - Azizan Ahmad
- Department of Chemical Science, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; Department of Physics, Faculty of Science and Technology, Airlangga University (Campus C), Mulyorejo Road, Surabaya 60115, Indonesia.
| |
Collapse
|
6
|
Sabuad A, Khaokong C, Kongseng P, Chantarak S. Superabsorbent ZnO/rubber-based hydrogel composite for removal and photocatalytic degradation of methylene blue. Int J Biol Macromol 2024; 275:133421. [PMID: 38945320 DOI: 10.1016/j.ijbiomac.2024.133421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
A superabsorbent hydrogel was prepared by the free-radical copolymerization of natural rubber (NR) latex with poly(acrylic acid) (PAA) at NR loadings up to 50 wt%. An NR/PAA hydrogel containing 40 wt% of NR (NR-40) had a water absorption capacity of 214 g/g (21,400 %) of its dry weight. The compressive modulus increased 512 % and sample integrity was improved due to the physical entanglement of NR chains. NR-40 hydrogel removed 97 % of methylene blue (MB) from the aqueous solution in 1 h (at initial concentrations of 10-1000 mg/L) and produced a maximum removal of 1191 mg MB/g of hydrogel at an initial MB concentration of 4500 mg/L. The adsorption of MB was an endothermic process. Fourier transform infrared spectroscopy indicated that hydrogen bonding and electrostatic interaction drove the process. After the in-situ incorporation of ZnO into NR-40, absorbed energy from sunlight generated active species that could photocatalytically degrade adsorbed MB in the hydrogel matrix. The scavenger tests indicated that superoxide radical anions and hydroxyl radicals were the main species for this process. The hydrogel composite material showed good stability and could be regenerated and reused over 10 cycles, degrading >80 % of the adsorbed dye. This novel natural-based hydrogel provides double functions of adsorption and photodegradation of toxic dyes without the requirement of chemicals and a separation process.
Collapse
Affiliation(s)
- Anussara Sabuad
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chuanpit Khaokong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
7
|
El Idrissi A, Channab BE, Essamlali Y, Zahouily M. Superabsorbent hydrogels based on natural polysaccharides: Classification, synthesis, physicochemical properties, and agronomic efficacy under abiotic stress conditions: A review. Int J Biol Macromol 2024; 258:128909. [PMID: 38141703 DOI: 10.1016/j.ijbiomac.2023.128909] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Superabsorbent polymers (SAPs) are a class of polymers that have attracted tremendous interest due to their multifunctional properties and wide range of applications. The importance of this class of polymers is highlighted by the large number of publications, including articles and patents, dealing with the use of SAPs for various applications. Within this framework, this review provides an overview of SAPs and highlights various key aspects, such as their history, classification, and preparation methods, including those related to chemically or physically cross-linked networks, as well as key factors affecting their performance in terms of water absorption and storage. This review also examines the potential use of polysaccharides-based SAPs in agriculture as soil conditioners or slow-release fertilizers. The basic aspects of SAPs, and methods of chemical modification of polysaccharides are presented and guidelines for the preparation of hydrogels are given. The water retention and swelling mechanisms are discussed in light of some mathematical empirical models. The nutrient slow-release kinetics of nutrient-rich SAPs are also examined on the basic of commonly used mathematical models. Some examples illustrating the advantages of using SAPs in agriculture as soil conditioners and agrochemical carriers to improve crop growth and productivity are presented and discussed. This review also attempts to provide an overview of the role of SAPs in mitigating the adverse effects of various abiotic stresses, such as heavy metals, salinity, and drought, and outlines future trends and prospects.
Collapse
Affiliation(s)
- Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II Casablanca University, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II Casablanca University, Morocco
| | - Younes Essamlali
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II Casablanca University, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
8
|
Rodríguez-Ramírez CA, Tasqué JE, Garcia NL, D'Accorso NB. Hemicelluloses hydrogel: Synthesis, characterization, and application in dye removal. Int J Biol Macromol 2023; 253:127010. [PMID: 37734519 DOI: 10.1016/j.ijbiomac.2023.127010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Novel materials using biowaste as adsorbents in wastewater treatment have been allocated considerable interest. Herein, we present the synthesis of different hydrogels of crosslinked polyacrylamide in presence of hemicelluloses with/ without bentonite, using a soft reaction condition. The structure of new hydrogels was characterized by spectroscopic, thermal and microscopic experiments. The semi-interpenetrated network with hemicelluloses: 10 %; acrylamide 79 %; bentonite 10 %; N,N,N',N'-tetramethylethylenediamine: 1 % allows reducing 20 % the use of non-renewable acrylamide, without changing its decomposition temperatures and keeping its water absorption capacity. This hydrogel was applied to dye removals, such as rhodamine B, methylene red and methylene blue in aqueous solutions. In the case of methylene blue, highest removal is observed with maximum adsorption of qmax = 140.66 mg/g, compared to material without hemicelluloses that only a qmax = 88.495 mg/g. The adsorption kinetics and equilibrium adsorption isotherms are in accordance with the pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The developed hydrogel from hemicelluloses represents a potential alternative adsorbent for a sustainable system of sewage treatment.
Collapse
Affiliation(s)
- C A Rodríguez-Ramírez
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | | | - Nancy Lis Garcia
- CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Norma B D'Accorso
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Jumnong K, Kongseng P, Maijan P, Suwanboon S, Chantarak S. Double-function ZnO/starch biodegradable hydrogel composite for methylene blue adsorption and photocatalytic degradation. Int J Biol Macromol 2023; 253:127533. [PMID: 37858654 DOI: 10.1016/j.ijbiomac.2023.127533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
An eco-friendly material for the removal of dyes from wastewater was developed. Biodegradable polymers (BP), cassava starch and poly(vinyl alcohol), were used to replace polyacrylamide. The hydrogel containing 50 wt% of BP (BP50) could absorb 34 times its dry weight of water. The hydrogel could adsorb Zn2+ and ZnO photocatalyst particles could be formed via a simple precipitation method. The incorporation of ZnO did not affect the adsorption efficiency of the ZnO/BP50 hydrogel composite towards methylene blue (MB). At initial concentrations (Co) below 4500 mg/g, the hydrogel composite removed ∼99 % of MB from solution in 3 h. The highest adsorption capacity of 1170 mg/g was obtained when Co was 6000 mg/g and at a dose of 0.10 g/20 mL. The hydrogel composite degraded 95 %-98 % of adsorbed MB at rates of 0.19 h-1 and 1.77 h-1 under UV irradiation and sunlight, respectively, with exposure times of 16 h for UV but only 2 h for sunlight. The material remained effective for at least 10 cycles of photodegradation under sunlight and removed 86 % of MB in solution on the 10th cycle. The composite also showed antibacterial activities and biodegradability in soil. These results indicated this material would not generate after-process toxic waste.
Collapse
Affiliation(s)
- Kanita Jumnong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pattarawadee Maijan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sumetha Suwanboon
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
10
|
Inphonlek S, Ruksakulpiwat C, Ruksakulpiwat Y. The Effect of Silver Nanoparticles/Titanium Dioxide in Poly(acrylic acid- co-acrylamide)-Modified, Deproteinized, Natural Rubber Composites on Dye Removal. Polymers (Basel) 2023; 16:92. [PMID: 38201757 PMCID: PMC10780644 DOI: 10.3390/polym16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This work aims to enhance the dye-removal performance of prepared poly(acrylic acid-co-acrylamide)-modified, deproteinized, natural rubber ((PAA-co-PAM)-DPNR) through incorporation with silver nanoparticles/titanium dioxide. The (PAA-co-PAM)-DPNR was prepared by emulsion-graft copolymerization with a grafting efficiency of 10.20 ± 2.33 to 54.26 ± 1.55%. The composites based on (PAA-co-PAM)-DPNR comprising silver nanoparticles and titanium dioxide ((PAA-co-PAM)-DPNR/Ag-TiO2) were then prepared by latex compounding using the fixed concentration of AgNO3 (0.5 phr) and varying concentrations of TiO2 at 1.0, 2.5, and 5.0 phr. The formation of silver nanoparticles was obtained by heat and applied pressure. The composites had a porous morphology as they allowed water to diffuse in their structure, allowing the high specific area to interact with dye molecules. The incorporation of silver nanoparticles/titanium dioxide improved the compressive modulus from 1.015 ± 0.062 to 2.283 ± 0.043 KPa. The (PAA-co-PAM)-DPNR/Ag-TiO2 composite with 5.0 phr of TiO2 had a maximum adsorption capacity of 206.42 mg/g, which increased by 2.02-fold compared to (PAA-co-PAM)-DPNR. The behavior of dye removal was assessed with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model. These composites can maintain their removal efficiency above 90% for up to five cycles. Thus, these composites could have the potential for dye-removal applications.
Collapse
Affiliation(s)
- Supharat Inphonlek
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
11
|
Ahmadian M, Jaymand M. Interpenetrating polymer network hydrogels for removal of synthetic dyes: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Abbasi N, Khan SA, Khan TA, Alharthi SS. Statistical evaluation of liquid phase sequestration of acridine orange and Cr 6+ by novel mesoporous glutamic acid-g-polyacrylamide/plaster of paris/riboflavin hydrogel nanocomposite. ENVIRONMENTAL RESEARCH 2022; 213:113712. [PMID: 35718168 DOI: 10.1016/j.envres.2022.113712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The adsorption of acridine orange and Cr6+ ion onto plaster of paris reinforced glutamic acid-grafted-polyacrylamide hydrogel nanocomposite modified with riboflavin, Glu-g-PAM/POP/Rb HNC was studied. The Glu-g-PAM/POP/Rb HNC was physico-chemically characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, transmission electron microscopy and Brunauer-Emmett-Teller analysis. The specific surface area, pore volume and pore diameter were 15.48 m2/g, 0.015 cm3/g and 4.23 nm, respectively. Adsorption process was strategized by response surface methodology (RSM) based on a 3-level 5-factor (initial solution pH, contact time, adsorbent dose, initial adsorbate concentration and temperature) central composite design (CCD), and validity of the estimated parameters was statistically evaluated using analysis of variance (ANOVA). The optimized operating variables were: pH (AO = 10; Cr6+ = 4.15), contact time (AO = 60 min; Cr6+ = 59 min), adsorbent dose (0.8 g/L), initial adsorbate concentration (60 mg/L) and temperature (298 K). Isotherm results were coincident with Langmuir isotherm model. The experimental kinetic adsorption data was congruous with pseudo-second order model, with the uptake rate controlled by both intraparticle and liquid film diffusions. The relatively high Langmuir saturation capacity of 202.63 mg AO/g and 143.68 mg Cr6+/g, supported by the decent recyclability up to four times affirmed the promising performance of the adsorbent. The efficacy of the adsorbent for simultaneous removal of AO and Cr6+ from bi-component system was assessed. The possible adsorption mechanism mainly involved hydrogen bonding, van der Waals forces, electrostatic and π-π interactions. Adsorption of AO and Cr6+ onto Glu-g-PAM/POP/Rb HNC was feasible and exothermic as revealed by the thermodynamic parameters. The findings demonstrated superior adsorbent efficacy for the seizure of pollutants, particularly AO and Cr6+ from aqueous solution.
Collapse
Affiliation(s)
- Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India.
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 110999, Taif, 21944, Saudi Arabia
| |
Collapse
|
13
|
Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022; 8:gels8090568. [PMID: 36135281 PMCID: PMC9498307 DOI: 10.3390/gels8090568] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023] Open
Abstract
Hydrogels are hydrophilic polymer materials that can swell but are insoluble in water. Hydrogels can be synthesized with synthetic or natural polymers, but natural polymers are preferred because they are similar to natural tissues, which can absorb a high water content, are biocompatible, and are biodegradable. The three-dimensional structure of the hydrogel affects its water insolubility and ability to maintain its shape. Cellulose hydrogels are preferred over other polymers because they are highly biocompatible, easily accessible, and affordable. Carboxymethyl cellulose sodium (CMCNa) is an example of a water-soluble cellulose derivative that can be synthesized using natural materials. A crosslinking agent is used to strengthen the properties of the hydrogel. Chemical crosslinking agent is used more often than physical crosslinking agent. In this review, article, different types of crosslinking agents are discussed based on synthetic and natural crosslinking agents. Hydrogels that utilize synthetic crosslinking agent have advantages, such as adjustable mechanical properties and easy control of the chemical composition. However, hydrogels that use natural crosslinking agent have better biocompatibility and less latent toxic effect.
Collapse
|
14
|
Zhao B, Zhao M, Sun H, Yang Y, Sun S, Yu H, He M, Sun Y, Cheng Y. Preparation and characterization of photo-oxidative dual-crosslinked chitosan/hyaluronic acid hydrogels. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
ALSamman MT, Sánchez J. Chitosan- and Alginate-Based Hydrogels for the Adsorption of Anionic and Cationic Dyes from Water. Polymers (Basel) 2022; 14:polym14081498. [PMID: 35458248 PMCID: PMC9025658 DOI: 10.3390/polym14081498] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Novel hydrogel systems based on polyacrylamide/chitosan (PAAM/chitosan) or polyacrylic acid/alginate (PAA/alginate) were prepared, characterized, and applied to reduce the concentrations of dyes in water. These hydrogels were synthetized via a semi-interpenetrating polymer network (semi-IPN) and then characterized by Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and their swelling capacities in water were measured. In the adsorption experiments, methylene blue (MB) was used as a cationic dye, and methyl orange (MO) was used as an anionic dye. The study was carried out using a successive batch method for the dye absorption process and an equilibrium system to investigate the adsorption of MO on PAAM/chitosan hydrogels and MB on PAA/alginate in separate experiments. The results showed that the target hydrogels were synthetized with high yield (more than 90%). The chemical structure of the hydrogels was corroborated by FTIR, and their high thermal stability was verified by TGA. The absorption of the MO dye was higher at pH 3.0 using PAAM/chitosan, and it had the ability to remove 43% of MO within 10 min using 0.05 g of hydrogel. The presence of interfering salts resulted in a 20–60% decrease in the absorption of MO. On the other hand, the absorption of the MB dye was higher at pH 8.5 using PAA/alginate, and it had the ability to remove 96% of MB within 10 min using 0.05 g of hydrogel, and its removal capacity was stable for interfering salts.
Collapse
|