1
|
Shueb MI, Mohamad N, Sapuan SZ, Khee YS, Che Halin DS, Sandu AV, Vizureanu P. Graphene Nanoplatelets Reinforced ABS Nanocomposite Films by Sonication-Assisted Cast Film Technique for Emission Shielding Application. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2645. [PMID: 40508642 PMCID: PMC12156008 DOI: 10.3390/ma18112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/22/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
The rapid proliferation of electronic devices has heightened the demand for efficient electromagnetic interference (EMI) shielding materials, as conventional alternatives increasingly fall short in mitigating harmful electromagnetic radiation. In this study, we report the fabrication of acrylonitrile butadiene styrene (ABS) nanocomposite films reinforced with graphene nanoplatelets (GNPs), offering a promising solution to this growing challenge. A persistent issue in incorporating GNPs into the ABS matrix is their poor wettability, which impedes uniform dispersion. To overcome this, a sonication-assisted casting technique was employed, enabling effective integration of GNPs at loadings of 1, 3, and 5 wt%. The resulting nanocomposite films exhibit uniform dispersion and enhanced functional properties. Comprehensive characterization using FESEM, UV-Vis spectroscopy, TGA, DSC, FTIR, and dielectric/EMI analyses revealed significant improvements in thermal stability, UV absorption, and dielectric behavior. Notably, the films demonstrated moderate EMI shielding effectiveness, reaching 0.0064 dB at 4 MHz. These findings position the developed GNP-reinforced ABS nanocomposites as promising candidates for advanced applications in the automotive, aerospace, and electronics industries.
Collapse
Affiliation(s)
- Mohammed Iqbal Shueb
- Polymer Processing and Prototyping Development Group, Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Selangor, Malaysia
| | - Noraiham Mohamad
- Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia;
| | - Syarfa Zahirah Sapuan
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat 86400, Johor, Malaysia; (S.Z.S.); (Y.S.K.)
| | - Yee See Khee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat 86400, Johor, Malaysia; (S.Z.S.); (Y.S.K.)
| | - Dewi Suriyani Che Halin
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 2, Taman Muhibbah, Arau 02600, Perlis, Malaysia;
- Centre of Excellent Geopolymer and Green Technology (CeGeoGTech), Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 2, Taman Muhibbah, Arau 02600, Perlis, Malaysia
| | - Andrei Victor Sandu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 67 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei St., Sect. 5, 050094 Bucharest, Romania
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 67 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 54 Splaiul Independentei St., Sect. 5, 050094 Bucharest, Romania
| |
Collapse
|
2
|
Song X, Lv HB, Jiang Z, Zhao B, Hu W, Zhang K, Shao ZB. Sustainable lignin-based high-efficiency flame-retardant epoxy resins with excellent mechanical properties. Int J Biol Macromol 2024; 282:136742. [PMID: 39433185 DOI: 10.1016/j.ijbiomac.2024.136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
As an abundant natural aromatic polymer, how to realize the high-value utilization of lignin (LA) is still a difficult problem. Herein, a sustainable flame retardant (LA@APP) was synthesized through hydrogen bonding interactions between LA and ammonium polyphosphate (APP), then flame retarded alone epoxy resin (EP/LA@APP). With loading of 6 wt% LA@APP, the LOI of EP/LA@APP6 rose to 27.9 % and achieved UL-94 V0 rating. Meanwhile, EP/LA@APP6 presented a 63.5 % reduction in peak of heat release rate (pHRR) and an 51.3 % decrease in peak of smoke production rate (pSPR). LA@APP could promote the EP composites to form the denser and more continuous expanded charring residuals than APP during the combustion process, effectively shielding the underlying epoxy substrate and thus enhancing fire safety. Additionally, the shell layer of LA@APP, abundant in hydroxyl groups and methoxy groups, effectively improved the compatibility and interfacial interaction with EP. Therefore, the tensile, flexural and impact strength of EP/LA@APP6 reached 50.8 MPa, 86.1 MPa and 7.81 kJ/m2, higher than those of pure EP at 48.3 MPa, 81.5 MPa and 7.45 kJ/m2. This flame retardant with simultaneously enhanced fire safety and mechanical properties of epoxy resin was expected to realize the high-level utilization of lignin.
Collapse
Affiliation(s)
- Xiang Song
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Hong-Bin Lv
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Zhiming Jiang
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Bin Zhao
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Wei Hu
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Kaitao Zhang
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China.
| | - Zhu-Bao Shao
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China.
| |
Collapse
|
3
|
Xu Y, Zhang W, Yin R, Sun J, Li B, Liu L. Novel Aryl Phosphate for Improving Fire Safety and Mechanical Properties of Epoxy Resins. Polymers (Basel) 2024; 16:3049. [PMID: 39518259 PMCID: PMC11548273 DOI: 10.3390/polym16213049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Epoxy resins (EPs) are highly flammable, and traditional flame retardant modifications often lead to a significant reduction in their mechanical performance, limiting their applications in aerospace and electrical and electronic fields. In this study, a novel flame retardant, bis(4-(((diphenylphosphoryl)oxy)methyl)phenyl)phenyl phosphate (DMP), was successfully prepared and introduced into the EP matrix. When the addition of DMP was 9 wt%, the EP/9 wt% DMP thermosets passed the UL-94 V-0 rating, and their LOI was increased from 24.5% of EP to 35.0%. With the introduction of DMP, the phosphoric acid compounds from the decomposition of DMP promoted the dehydration and charring of the EP matrix, and the compact, dense char layer effectively exerted the shielding effect in the condensed phase. Meanwhile, the produced phosphorus-containing radicals played a quenching effect in the gas phase. As a result, the peak heat release rate (PHRR) and total heat release (THR) of EP/9 wt% DMP were reduced by 68.9% and 18.1% compared to pure EP. In addition, the polyaromatic structure of DMP had good compatibility with the EP matrix, and the tensile strength, flexural strength and impact strength of EP/9 wt% DMP were enhanced by 116.38%, 17.84% and 59.11% in comparison with that of pure EP. This study is valuable for expanding the application of flame-retardant EP/DMP thermosets in emerging fields.
Collapse
Affiliation(s)
- Yue Xu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Wenjia Zhang
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Ru Yin
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Lubin Liu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Sun F, Wang L, Gao T, Zhong Y, Ren K. Enhanced Fire Safety of Energy-Saving Foam by Self-Cleavage CO 2 Pre-Combustion and Phosphorus Release Post-Combustion. Molecules 2024; 29:3708. [PMID: 39125111 PMCID: PMC11314537 DOI: 10.3390/molecules29153708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rigid polyurethane foam (RPUF) is widely utilized in construction and rail transportation due to its lightweight properties and low thermal conductivity, contributing to energy conservation and emission reduction. However, the inherent flammability of RPUF presents significant challenges. Delaying the time to ignition and preventing flame spread post-combustion is crucial for ensuring sufficient evacuation time in the event of a fire. Based on this principle, this study explores the efficacy of using potassium salts as a catalyst to promote the self-cleavage of RPUF, generating substantial amounts of CO2, thereby reducing the local oxygen concentration and delaying ignition. Additionally, the inclusion of a reactive flame retardant (DFD) facilitates the release of phosphorus-oxygen free radicals during combustion, disrupting the combustion chain reaction and thus mitigating flame propagation. Moreover, potassium salt-induced catalytic carbonization and phosphorus derivative cross-linking enhance the condensed phase flame retardancy. Consequently, the combined application of potassium salts and DFD increases the limiting oxygen index (LOI) and reduces both peak heat release rate (PHRR) and total heat release (THR). Importantly, the incorporation of these additives does not compromise the compressive strength or thermal insulation performance of RPUF. This integrated approach offers a new and effective strategy for the development of flame retardant RPUF.
Collapse
Affiliation(s)
- Fengyun Sun
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Lijun Wang
- Clinical College, Chengdu University, Chengdu 610106, China; (L.W.); (T.G.)
| | - Tiantian Gao
- Clinical College, Chengdu University, Chengdu 610106, China; (L.W.); (T.G.)
| | - Yuanyuan Zhong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Kefa Ren
- College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610051, China
| |
Collapse
|
5
|
Song X, Lv HB, Shi MM, Shao ZB, Wang YZ. Calcium gluconate-based flame retardant towards simultaneously high-efficiency fire safety and mechanical enhancement for epoxy resin. Int J Biol Macromol 2024; 264:130409. [PMID: 38417750 DOI: 10.1016/j.ijbiomac.2024.130409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Flame retardants containing biomass receive growing interest in environmental friendliness and sustainability but usually face the low flame-retardant efficiency and deterioration on mechanical property of matrix. Herein, a calcium gluconate-based flame retardant (CG@APP) was chemically prepared using calcium gluconate (CG) and ammonium polyphosphate (APP) via ion exchange reaction, and enabled the excellent fire safety and mechanical enhancement for epoxy resin (EP). The resulted EP composites containing 6 wt% CG@APP (EP/CG@APP6) exhibited V-0 ratings in UL-94 test. Furthermore, with respect to EP/APP6, the peak of heat release rate (pHRR) and peak of smoke production rate (pSPR) of EP/CG@APP6 decreased by 70.5 % and 50.0 %, respectively. The well synergistic flame-retardant mechanism of CG@APP between gaseous and solid phases was revealed to generate denser and more continuous charring residuals, which could do well work on insulation for heat transfer and fuel diffusion. In addition, the shell rich in hydroxyl group and Ca2+ on the surface of CG@APP well enhanced the interface compatibility through the hydrogen bond and coordinated bond, thus the tensile strength, flexural strength and impact strength of EP/CG@APP6 increased by 18.2 %, 4.5 % and 9.1 % compared with pure EP, respectively. This work provided a simple and sustainable way to construct excellent fire-safety composites.
Collapse
Affiliation(s)
- Xiang Song
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Hong-Bin Lv
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Miao-Miao Shi
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Zhu-Bao Shao
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Guo S, Wu K, Pan Z, Zhou H, Zhou C. Flame retardant, high mechanical strength, transparent and water-resistant epoxy composites modified with chitosan derivatives. Int J Biol Macromol 2024; 260:129580. [PMID: 38246442 DOI: 10.1016/j.ijbiomac.2024.129580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Adding bio-based flame retardants to improve the flame retardancy of polymer materials without sacrificing other properties is a great challenge. Herein, a novel flame-retardant CS-DOPA was prepared from chitosan and 10-hydroxy-9,10-dihydro-9-oza-10-phosphaphenanthrene-10-oxide by acid-base neutralization reaction and fully characterized. The 4 wt% CS-DOPA modified EP showed good flame retardancy in both gaseous and condensed phase. The peak heat release rate, total smoke production, CO production, and smoke production rate of EP composites containing 4 wt% CS-DOPA were reduced by 55 %, 34 %, 45 %, and 46 %, respectively, to pass the UL-94 V-1 rating with a limiting oxygen index of 34.1 %. The CS-DOPA contributes to the formation of the condensed phase of the thermo-oxidation-resistant high-quality char layer with non-flammable other and phosphorus-containing free radicals released in the gas phase. In addition, EP/4CS-DOPA has good water resistance, mechanical properties, and transparency, with tensile and flexural strength improved by 12.7 % and 13.9 %, respectively, and still has high strength even after water treatment. The present work provides a green and facile strategy to use chitosan as a main raw material to manufacture EP materials with high performance.
Collapse
Affiliation(s)
- Shenxiang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; Hubei Branch of China National Geological Exploration Center of Building Materials Industry, Wuhan 430022, China
| | - Kunxiong Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zhiquan Pan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hong Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Chenyu Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
7
|
Zhang T, Liu Y. Preparation of High-Transparency Phosphenanthrene-Based Flame Retardants and Studies of Their Flame-Retardant Properties. Polymers (Basel) 2023; 15:4665. [PMID: 38139917 PMCID: PMC10747229 DOI: 10.3390/polym15244665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Transparency is an important property for polymer flame retardants, especially epoxy resin (EP) flame retardants, and flame-retardant epoxy resins that maintain a high transparency and low chromatic aberration play important roles in the optical, lighting, and energy industries. Herein, a DOPO-based flame retardant 6,6'-((sulfonylbis(4,1-phenylene))bis(oxy))bis(dibenzo[c,e][1,2]oxaphosphinine 6-oxide) with a high transparency and low chromatic aberration was prepared via the classical Atherton-Todd reaction and named SBPDOPO. Its chemical structure was characterized with Fourier IR spectroscopy and NMR spectroscopy. An EP loaded with 7 wt% SBPDOPO passed the UL-94 V-0 rating with an LOI value of 32.1%, and the peak heat release rate, total heat release, and total smoke production were reduced by 34.1%, 31.6%, and 27.7%, respectively, compared with those of pure EP. In addition, the addition of SBPDOPO improved the thermal stability, residual mass, and glass transition temperature of the EP. On this basis, the EP containing 7 wt% SBPDOPO maintained a high transparency and low color aberration, with a transmittance of 94% relative to that of pure EP and a color aberration ΔE of 1.63. Finally, the flame-retardant mechanism of SBPDOPO was analyzed, which demonstrated that it exerted both gas-phase and condensed-phase flame-retardant effects, and that SBPDOPO/EP had high potential for application scenarios in which both flame retardancy and transparency are needed. SBPDOPO/EP has great potential for applications requiring both flame retardancy and transparency.
Collapse
Affiliation(s)
- Tao Zhang
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Yong Liu
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
- Work Safety Key Laboratory on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
8
|
Davidson DJ, McKay AP, Cordes DB, Woollins JD, Westwood NJ. The Covalent Linking of Organophosphorus Heterocycles to Date Palm Wood-Derived Lignin: Hunting for New Materials with Flame-Retardant Potential. Molecules 2023; 28:7885. [PMID: 38067614 PMCID: PMC10707890 DOI: 10.3390/molecules28237885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 07/03/2024] Open
Abstract
Environmentally acceptable and renewably sourced flame retardants are in demand. Recent studies have shown that the incorporation of the biopolymer lignin into a polymer can improve its ability to form a char layer upon heating to a high temperature. Char layer formation is a central component of flame-retardant activity. The covalent modification of lignin is an established technique that is being applied to the development of potential flame retardants. In this study, four novel modified lignins were prepared, and their char-forming abilities were assessed using thermogravimetric analysis. The lignin was obtained from date palm wood using a butanosolv pretreatment. The removal of the majority of the ester groups from this heavily acylated lignin was achieved via alkaline hydrolysis. The subsequent modification of the lignin involved the incorporation of an azide functional group and copper-catalysed azide-alkyne cycloaddition reactions. These reactions enabled novel organophosphorus heterocycles to be linked to the lignin. Our preliminary results suggest that the modified lignins had improved char-forming activity compared to the controls. 31P and HSQC NMR and small-molecule X-ray crystallography were used to analyse the prepared compounds and lignins.
Collapse
Affiliation(s)
- Daniel J. Davidson
- School of Chemistry, University of St Andrews and EaStCHEM, North Haugh, St Andrews KY16 9ST, UK; (D.J.D.); (A.P.M.); (J.D.W.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Aidan P. McKay
- School of Chemistry, University of St Andrews and EaStCHEM, North Haugh, St Andrews KY16 9ST, UK; (D.J.D.); (A.P.M.); (J.D.W.)
| | - David B. Cordes
- School of Chemistry, University of St Andrews and EaStCHEM, North Haugh, St Andrews KY16 9ST, UK; (D.J.D.); (A.P.M.); (J.D.W.)
| | - J. Derek Woollins
- School of Chemistry, University of St Andrews and EaStCHEM, North Haugh, St Andrews KY16 9ST, UK; (D.J.D.); (A.P.M.); (J.D.W.)
- Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nicholas J. Westwood
- School of Chemistry, University of St Andrews and EaStCHEM, North Haugh, St Andrews KY16 9ST, UK; (D.J.D.); (A.P.M.); (J.D.W.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
9
|
Huang Z, Li F, Huang M, Meng W, Rao W, Lei Y, Yu C. Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin. Molecules 2023; 28:molecules28114287. [PMID: 37298763 DOI: 10.3390/molecules28114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
One of the current challenges in the development of flame retardants is the preparation of an environmentally friendly multi-element synergistic flame retardant to improve the flame retardancy, mechanical performance, and thermal performance of composites. This study synthesized an organic flame retardant (APH) using (3-aminopropyl) triethoxysilane (KH-550), 1,4-phthalaadehyde, 1,5-diaminonaphthalene, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as raw materials, through the Kabachnik-Fields reaction. Adding APH to epoxy resin (EP) composites could greatly improve their flame retardancy. For instance, UL-94 with 4 wt% APH/EP reached the V-0 rating and had an LOI as high as 31.2%. Additionally, the peak heat release rate (PHRR), average heat release rate (AvHRR), total heat release (THR), and total smoke produced (TSP) of 4% APH/EP were 34.1%, 31.8%, 15.2%, and 38.4% lower than EP, respectively. The addition of APH improved the mechanical performance and thermal performance of the composites. After adding 1% APH, the impact strength increased by 15.0%, which was attributed to the good compatibility between APH and EP. The TG and DSC analyses revealed that the APH/EP composites that incorporated rigid naphthalene ring groups had higher glass transition temperatures (Tg) and a higher amount of char residue (C700). The pyrolysis products of APH/EP were systematically investigated, and the results revealed that flame retardancy of APH was realized by the condensed-phase mechanism. APH has good compatibility with EP, excellent thermal performance, enhanced mechanical performance and rational flame retardancy, and the combustion products of the as-prepared composites complied with the green and environmental protection standards which are also broadly applied in industry.
Collapse
Affiliation(s)
- Ziqin Huang
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Fangli Li
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Mingyan Huang
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Wenqiao Meng
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Wenhui Rao
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Yuan Lei
- China Antimony Corporation, Nanning 530001, China
| | - Chuanbai Yu
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| |
Collapse
|
10
|
Gao S, Qi J, Qi P, Xu R, Wu T, Zhang B, Huang J, Yan Y. Unprecedented Nonflammable Organic Adhesives Leading to Fireproof Wood Products. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8609-8616. [PMID: 36724404 DOI: 10.1021/acsami.2c19072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report an excellent water-based inflammable organic wood adhesive that is able to protect wood products from burning by generating inflammable gases, a porous thick char layer, and radicals that consume the oxygen and hydrogen radicals required in the burning process. The organic adhesive is obtained by the formation of hard supramolecular phases composed of high-density flame-retardant N and P elements through hydrogen bonding and acid-base interaction between the phytic acid and branched polyethylenimine (b-PEI). The phytic acid molecules are packed densely in the framework of the flexible b-PEI so that a porous char layer that would reduce heat conduction can be formed as the adhesive is heated. Together with the formation of inflammable NH3 gas to dilute the oxygen concentration and a PO• radical to capture the H• and O• radicals, the adhesive-treated wood product displays an extremely high limited oxygen index of 100% and a negligible heat release rate, total heat release, and total smoke release. The current flame-retardant water-based organic adhesive is so far the best adhesive for green and safe wood products from burning.
Collapse
Affiliation(s)
- Shuitao Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinwan Qi
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruosen Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongyue Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Amino Phenyl Copper Phosphate-Bridged Reactive Phosphaphenanthrene to Intensify Fire Safety of Epoxy Resins. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020623. [PMID: 36677680 PMCID: PMC9861604 DOI: 10.3390/molecules28020623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
To improve the compatibility between flame retardant and epoxy resin (EP) matrix, amino phenyl copper phosphate-9, 10-dihydro-9-oxygen-10-phospha-phenanthrene-10-oxide (CuPPA-DOPO) is synthesized through surface grafting, which is blended with EP matrix to prepare EP/CuPPA-DOPO composites. The amorphous structure of CuPPA-DOPO is characterized by X-ray diffraction and Fourier-transform infrared spectroscopy. Scanning electron microscope (SEM) images indicate that the agglomeration of hybrids is improved, resisting the intense intermolecular attractions on account of the acting force between CuPPA and DOPO. The results of thermal analysis show that CuPPA-DOPO can promote the premature decomposition of EP and increase the residual amount of EP composites. It is worth mentioning that EP/6 wt% CuPPA-DOPO composites reach UL-94 V-1 level and limiting oxygen index (LOI) of 32.6%. Meanwhile, their peak heat release rate (PHRR), peak smoke production release (PSPR) and CO2 production (CO2P) are decreased by 52.5%, 26.1% and 41.4%, respectively, compared with those of EP. The inhibition effect of CuPPA-DOPO on the combustion of EP may be due to the release of phosphorus and ammonia free radicals, as well as the catalytic charring ability of metal oxides and phosphorus phases.
Collapse
|
12
|
No business as usual: The effect of smoke suppressants commonly used in the flame retardant PA6.6 on smoke and fire properties. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Bao Q, He R, Liu Y, Wang Q, Zhang C. Functionalized halloysite nanotubes endowing epoxy resin with simultaneously enhanced flame retardancy and mechanical properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Environmentally Friendly Hybrid Organic-Inorganic Halogen-Free Coatings for Wood Fire-Retardant Applications. Polymers (Basel) 2022; 14:polym14224959. [PMID: 36433089 PMCID: PMC9693554 DOI: 10.3390/polym14224959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Wood and wood-based products are extensively used in the building sector due to their interesting combination of properties. Fire safety and fire spread, however, are of utmost concern for the protection of buildings. Therefore, in timber structures, wood must be treated with fire-retardant materials in order to improve its reaction to fire. This article highlights the flame retardancy of novel hybrid organic-inorganic halogen-free coatings applied on plywood substrates. For this purpose, either a huntite-rich mineral (H5) or its modified nano-Mg (OH)2 type form (H5-m), acting as an inorganic (nano) filler, was functionalized with reactive oligomers (ROs) and incorporated into a waterborne polymeric matrix. A water-soluble polymer (P (SSNa-co-GMAx)), combining its hydrophilic nature with functional epoxide groups, was used as the reactive oligomer in order to enhance the compatibility between the filler and the matrix. Among various coating compositions, the system composed of 13% polymeric matrix, 73% H5 and 14% ROs, which provided the best coating quality and flame retardancy, was selected for the coating of plywood on a larger scale in one or two layers. The results indicated that the novel plywood coating systems with the addition of ecological coating formulations (WF-13, WF-14 and WF-15), prepared at two layers, reached Euroclass B according to EN13501-1, which is the best possible for fire systems applied to wood.
Collapse
|
15
|
Hamciuc C, Vlad-Bubulac T, Serbezeanu D, Macsim AM, Lisa G, Anghel I, Şofran IE. Thermal Properties and Flammability Characteristics of a Series of DGEBA-Based Thermosets Loaded with a Novel Bisphenol Containing DOPO and Phenylphosphonate Units. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7829. [PMID: 36363420 PMCID: PMC9657289 DOI: 10.3390/ma15217829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Despite a recent sustained preoccupation for developing biobased epoxies with enhanced applicability, such products have not been widely accepted for industry because of their inferior characteristics compared to classic petroleum-based epoxy thermosets. Therefore, significant effort is being made to improve the flame retardance of the most commonly used epoxies, such as diglycidyl ether-based bisphenol A (DGEBA), bisphenol F (DGEBF), novalac epoxy, and others, while continuously avoiding the use of hazardous halogen-containing flame retardants. Herein, a phosphorus-containing bisphenol, bis(4-(((4-hydroxyphenyl)amino)(6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)phenyl) phenylphosphonate (BPH), was synthesized by reacting bis(4-formylphenyl)phenylphosphonate with 4-hydroxybenzaldehyde followed by the addition of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to the resulting azomethine groups. Environmentally friendly epoxy-based polymer thermosets were prepared by using epoxy resin as polymer matrix and a mixture of BPH and 4,4'-diaminodiphenylsulfone (DDS) as hardeners. A hyperbranched phthalocyanine polymer (HPc) and BaTiO3 nanoparticles were incorporated into epoxy resin to improve the characteristics of the final products. The structure and morphology of epoxy thermosets were evaluated by infrared spectroscopy and scanning electron microscopy (SEM), while the flammability characteristics were evaluated by microscale combustion calorimetry. Thermal properties were determined by thermogravimetric analysis and differential scanning calorimetry. The surface morphology of the char residues obtained by pyrolysis was studied by SEM analysis.
Collapse
Affiliation(s)
- Corneliu Hamciuc
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Tăchiță Vlad-Bubulac
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ana-Maria Macsim
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania
| | - Ion Anghel
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Ioana-Emilia Şofran
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| |
Collapse
|
16
|
Cai B, Qian L, Qiu Y, Wang J, Xi W, Chen Y, Tang W. Group aggregation effect of polyphenolic phosphaphenanthrene macromolecule on enhancing fire safety and toughness of epoxy thermoset. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Xiaojing L, Wang J, Guo Y. Evaluation of
bisphenol‐A
epoxy cured with diethylenetriamine by using phosphorus containing liquid poly(1,2‐butadiene) as multifunctional additives. J Appl Polym Sci 2022. [DOI: 10.1002/app.53224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lv Xiaojing
- Institute of Advanced Materials and Engineering University of Science and Technology Beijing Beijing China
| | - Jinwei Wang
- Institute of Advanced Materials and Engineering University of Science and Technology Beijing Beijing China
- Shunde Graduate School University of Science and Technology Beijing Beijing China
| | - Yong Guo
- Institute of Advanced Materials and Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
18
|
Transparent, flame retardant, mechanically strengthened and low dielectric EP composites enabled by a reactive bio-based P/N flame retardant. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Effects of Phosphorus and Boron Compounds on Thermal Stability and Flame Retardancy Properties of Epoxy Composites. Polymers (Basel) 2022; 14:polym14194005. [PMID: 36235953 PMCID: PMC9573513 DOI: 10.3390/polym14194005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
While plastics are regarded as the most resourceful materials nowadays, ranging from countless utilities including protective or decorating coatings, to adhesives, packaging materials, electronic components, paintings, furniture, insulating composites, foams, building blocks and so on, their critical limitation is their advanced flammability, which in fire incidents can result in dramatic human fatalities and irreversible environmental damage. Herein, epoxy-based composites with improved flame-resistant characteristics have been prepared by incorporating two flame retardant additives into epoxy resin, namely 6-(hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (PFR) and boric acid (H3BO3). The additional reaction of 9,10-dihydro-oxa-10-phosphophenanthrene-10-oxide (DOPO) to the carbonyl group of benzaldehyde yielded PFR, which was then used to prepare epoxy composites having a phosphorus content ranging from 1.5 to 4 wt%, while the boron content was 2 wt%. The structure, morphology, thermal stability and flammability of resulted epoxy composites were investigated by FTIR spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry (MCC). Thermogravimetric analysis indicated that the simultaneous incorporation of PFR and H3BO3 improved the thermal stability of the char residue at high temperatures. The surface morphology of the char residues, studied by SEM measurements, showed improved characteristics in the case of the samples containing both phosphorus and boron atoms. The MCC tests revealed a significant reduction in flammability as well as a significant decrease in heat release capacity for samples containing both PFR and H3BO3 compared to the neat epoxy thermoset.
Collapse
|
20
|
Branda F, Parida D, Pauer R, Durante M, Gaan S, Malucelli G, Bifulco A. Effect of the Coupling Agent (3-Aminopropyl) Triethoxysilane on the Structure and Fire Behavior of Solvent-Free One-Pot Synthesized Silica-Epoxy Nanocomposites. Polymers (Basel) 2022; 14:polym14183853. [PMID: 36145998 PMCID: PMC9506363 DOI: 10.3390/polym14183853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Uniformly distributed silica/epoxy nanocomposites (2 and 6 wt.% silica content) were obtained through a “solvent-free one-pot” process. The inorganic phases were obtained through “in situ” sol-gel chemistry from two precursors, tetraethyl orthosilicate (TEOS) and (3-aminopropyl)-triethoxysilane (APTES). APTES acts as a coupling agent. Surprisingly when changing TEOS/APTES molar ratio (from 2.32 to 1.25), two opposite trends of glass transformation temperature (Tg) were observed for silica loading, i.e., at lower content, a decreased Tg (for 2 wt.% silica) and at higher content an increased Tg (for 6 wt.% silica) was observed. High-Resolution Transmission Electron Microscopy (HRTEM) showed the formation of multi-sheet silica-based nanoparticles with decreasing size at a lower TEOS/APTES molar ratio. Based on a recently proposed mechanism, the experimental results can be explained by the formation of a co-continuous hybrid network due to reorganization of the epoxy matrix around two different “in situ” sol-gel derived silicatic phases, i.e., micelles formed mainly by APTES and multi-sheet silica nanoparticles. Moreover, the concentration of APTES affected the size distribution of the multi-sheet silica-based nanoparticles, leading to the formation of structures that became smaller at a higher content. Flammability and forced-combustion tests proved that the nanocomposites exhibited excellent fire retardancy.
Collapse
Affiliation(s)
- Francesco Branda
- Department of Chemical Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
- Correspondence: (F.B.); (A.B.); Tel.: +39-081-768-2412 (F.B.); +39-081-768-2413 (A.B.)
| | - Dambarudhar Parida
- Sustainable Polymer Technologies (SPOT) Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium
| | - Robin Pauer
- Advanced Materials and Surfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dubendorf, Switzerland
| | - Massimo Durante
- Department of Chemical Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Sabyasachi Gaan
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Aurelio Bifulco
- Department of Chemical Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
- Correspondence: (F.B.); (A.B.); Tel.: +39-081-768-2412 (F.B.); +39-081-768-2413 (A.B.)
| |
Collapse
|
21
|
Zhang Y, Pan D, Chang C, Liu H, Liu Z. Preparation of a multifunctional flame retardant epoxy resin containing phosphorus and nitrogen and study of its properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.53041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yijun Zhang
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Dawei Pan
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Changfan Chang
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Hua Liu
- Department of Research and Development Sino Polymer Co., Ltd of East China University of Science and Technology Shanghai China
| | - Zuozhen Liu
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
- Department of Research and Development Sino Polymer Co., Ltd of East China University of Science and Technology Shanghai China
- Shanghai Huayi resin Co., Ltd Shanghai China
| |
Collapse
|
22
|
Zhang W, Xia W, Shi Y, Zhou C, Chen R, Wang L, Qu J. A
DOPO
‐anchored benzothiadiazole derivative toward efficiently P/N/S synergistic flame retarding of epoxy thermoset. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wu Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Weikang Xia
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Yasheng Shi
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Changlin Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Ran Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Hubei Three Gorges Laboratory Yichang Hubei China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|