1
|
Tyubaeva PM, Varyan IA, Gasparyan KG, Romanov RR, Pozdnyakov AS, Morokov ES, Kolesnikov EA, Podmasterev VV, Popov AA. Influence of the ozone treatment on the environmental degradation of poly-3-hydroxybutyrate. Int J Biol Macromol 2025; 306:141474. [PMID: 40020801 DOI: 10.1016/j.ijbiomac.2025.141474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The effect of oxidation on the structure and properties of polyesters remains an urgent issue due to the prospects for regulating the stability of the polymer and modifying its surface. The available data on the effect of ozone on the structure and properties of poly-3-hydroxybutyrate (PHB), in particular on the rate of its destruction, are contradictory. So, the purpose of the work was to study the effect of ozone oxidation on structure and properties of PHB to find the impact of the ozone treatment on controlling the rate of the biodegradation in environmental conditions. The surface of PHB films was modified using ozone treatment to accelerate its biodegradation rate in soil. The essence of ozonation is in the accumulation of various oxygen-containing functional groups, which leads to increased intermolecular interaction of PHB chains, which leads to the hardening of the surface. It was shown that the ozone treatment of the surface slowed down the diffusion of destructors to the volume of the PHB and prevented the fragmentation of the film. In addition, the strength of the films after 5 h of ozonation increased from 25 to 42 MPa, but the wetting angle did not change and no significant change in the surface crystallinity were detected before the soil exposure of the films. The soil burial test showed an approximately 1.5-fold decrease in the biodegradation rate for the ozone-treated sample. This study demonstrated that the surface morphology created by ozone treatment formed a unique outer layer of a new morphology. Ozonated PHB films were more resistant to fragmentation and remained stable in the soil for 300 days, while the control sample of PHB completely decomposed in 240 days. The paper discusses the causes and consequences of these observations and the role of ozone treatment for the modification of PHB surface. The results obtained can be used to control the rate of degradation and to predict the behavior of sterilized products in the field of packaging, medical products, and products with a limited service life due to the understanding of mechanism of surface modification.
Collapse
Affiliation(s)
- Polina M Tyubaeva
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation.
| | - Ivetta A Varyan
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Kristina G Gasparyan
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Roman R Romanov
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Alexander S Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Egor S Morokov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Evgeny A Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology (MISIS), 119991 Moscow, Russia
| | - Vyacheslav V Podmasterev
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Anatoly A Popov
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| |
Collapse
|
2
|
Majka TM, Raftopoulos KN, Hebda E, Szeligowski A, Zastawny O, Guzik M, Pielichowski K. PHB+aPHA Blends: From Polymer Bacterial Synthesis through Blend Preparation to Final Processing by Extrusion for Sustainable Materials Design. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3105. [PMID: 38998187 PMCID: PMC11242752 DOI: 10.3390/ma17133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
The inherent brittleness of polyhydroxybutyrate (PHB), a well-studied polyhydroxyalkanoate (PHA), limits its applicability in flexible and impact-resistant applications. This study explores the potential of blending PHB with a different PHA to overcome brittleness. The synthesis of PHA polymers, including PHB and an amorphous medium-chain-length PHA (aPHA) consisting of various monomers, was achieved in previous works through canola oil fermentation. Detailed characterization of aPHA revealed its amorphous nature, as well as good thermal stability and shear thinning behavior. The blending process was carried out at different mass ratios of aPHA and PHB, and the resulting blends were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The blends exhibited complex DSC curves, indicating the presence of multiple crystalline forms of PHB. SEM images revealed the morphology of the blends, with PHB particles dispersed within the aPHA matrix. TGA showed similar thermal degradation patterns for the blends, with the residue content decreasing as the PHB content increased. The crystallinity of the blends was influenced by the PHB content, with higher PHB ratios resulting in an increased degree of crystallinity. XRD confirmed the presence of both α and β crystals of PHB in the blends. Overall, the results demonstrate the potential of PHB+aPHA blends to enhance the mechanical properties of biopolymer materials, without com-promising the thermal stability, paving the way for sustainable material design and novel application areas.
Collapse
Affiliation(s)
- Tomasz M. Majka
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Konstantinos N. Raftopoulos
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Adam Szeligowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
- ORLEN Południe S.A., Fabryczna 22, 32-540 Trzebinia, Poland
| | - Olga Zastawny
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| |
Collapse
|
3
|
Krzykowska B, Czerniecka-Kubicka A, Białkowska A, Bakar M, Kovářová M, Sedlařík V, Hanusova D, Zarzyka I. Biopolymer Compositions Based on Poly(3-hydroxybutyrate) and Linear Polyurethanes with Aromatic Rings-Preparation and Properties Evaluation. Polymers (Basel) 2024; 16:1618. [PMID: 38931968 PMCID: PMC11207839 DOI: 10.3390/polym16121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Polymer biocompositions of poly(3-hydroxybutyrate) (P3HB) and linear polyurethanes (PU) with aromatic rings were produced by melt-blending at different P3HB/PU weight ratios (100/0, 95/5, 90/10, and 85/15). Polyurethanes have been prepared with 4,4'-diphenylmethane diisocyanate and polyethylene glycols with molar masses of 400 g/mol (PU400), 1000g/mol (PU1000), and 1500 g/mol (PU1500). The compatibility and morphology of the obtained polymer blends were determined by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The effect of the polyurethane content in the biocompositions on their thermal stability and mechanical properties was investigated and compared with those of the native P3HB. It was shown that increasing the PU content in P3HB-PU compositions to 10 wt.% leads to an improvement in the mentioned properties. The obtained results demonstrated that the thermal stability and mechanical properties of P3HB were improved, particularly in terms of increasing the degradation temperature, reducing hardness, and increasing impact strength. The best thermal and mechanical properties were shown by the P3HB-PU polymer compositions containing 10 wt.% of polyurethane modifiers, especially PU1000, which was also confirmed by the morphology analysis of these biocompositions. The presence of polyurethanes in the resulting polymer biocomposites decreases their glass transition temperatures, i.e., makes the materials more flexible. The resulting polymer biocompositions have suitable mechanical properties and thermal properties within the processing conditions for the predicted application as biodegradable, short-lived products for agriculture.
Collapse
Affiliation(s)
- Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Anna Czerniecka-Kubicka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszów, Poland;
| | - Anita Białkowska
- Faculty of Applied Chemistry, Radom University, Chrobrego 27, 26-600 Radom, Poland; (A.B.); (M.B.)
| | - Mohamed Bakar
- Faculty of Applied Chemistry, Radom University, Chrobrego 27, 26-600 Radom, Poland; (A.B.); (M.B.)
| | - Miroslava Kovářová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Dominika Hanusova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Patel KG, Maynard RK, Ferguson LS, Broich ML, Bledsoe JC, Wood CC, Crane GH, Bramhall JA, Rust JM, Williams-Rhaesa A, Locklin JJ. Experimentally Determined Hansen Solubility Parameters of Biobased and Biodegradable Polyesters. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:2386-2393. [PMID: 38362530 PMCID: PMC10865435 DOI: 10.1021/acssuschemeng.3c07284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Hansen solubility parameters (HSP) of 15 commercially relevant biobased and biodegradable polyesters were experimentally determined by applying a novel approach to the classic solubility study method. In this approach, the extent of swelling in polymer films was determined using a simple equation based on the mass difference between swollen and nonswollen film samples to obtain normalized solvent uptake (N). Using N and HSPiP software, highly accurate HSP values were obtained for all 15 polyesters. Qualitative evaluation of the HSP values was conducted by predicting the miscibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-co-HHx, 7 mol % HHx) and poly(lactic acid) (PLA) with a novel lignin-based plasticizer (ethyl 3-(4-ethoxy-3-methoxyphenyl)propanoate, EP) with a relative energy difference (RED) less than 0.4. Additionally, an HSP-predicted plasticizer (di(2-ethylhexyl) adipate, DA) with a larger RED (>0.7) was used to demonstrate the effects of less-miscible additives. Plasticized samples were analyzed by differential scanning calorimetry and polarized optical microscopy (POM) to determine the Tg depression, with EP showing linear Tg depression up to 50% plasticizer loading, whereas DA shows minimal Tg depression past 10% loading. Further analysis by POM reveals that the DA phase separates from both polymers at loadings as low as 2.5% (PHB-co-HHx, 7 mol % HHx) and 5% (PLA), while the EP phase separates at a much higher loading of 50% (PHB-co-HHx, 7 mol% HHx) and 30% (PLA).
Collapse
Affiliation(s)
- Kush G. Patel
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, 597 D.W. Brooks Dr., Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Ryan K. Maynard
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Lawrence S. Ferguson
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Michael L. Broich
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, 597 D.W. Brooks Dr., Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Joshua C. Bledsoe
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Caitlin C. Wood
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Grant H. Crane
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Jessica A. Bramhall
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Jonathan M. Rust
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Amanda Williams-Rhaesa
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Jason J. Locklin
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, 597 D.W. Brooks Dr., Athens, Georgia 30602, United States
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Krzykowska B, Czerniecka-Kubicka A, Białkowska A, Bakar M, Hęclik K, Dobrowolski L, Longosz M, Zarzyka I. Polymer Biocompositions and Nanobiocomposites Based on P3HB with Polyurethane and Montmorillonite. Int J Mol Sci 2023; 24:17405. [PMID: 38139234 PMCID: PMC10743510 DOI: 10.3390/ijms242417405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Due to the growing interest in biopolymers, biosynthesizable and biodegradable polymers currently occupy a special place. Unfortunately, the properties of native biopolymers make them not good enough for use as substitutes for conventional polymers. Therefore, attempts are being made to modify their properties. In this work, in order to improve the properties of the poly(3-hydroxybutyrate) (P3HB) biopolymer, linear aliphatic polyurethane (PU) based on 1,4-butanediol (BD) and hexamethylene 1,6-diisocyanate (HDI) was used. The conducted studies on the effect of the amount of PU used (5, 10, 15 and 20 m/m%) showed an improvement in the thermal properties of the prepared polymer blends. As part of the tested mechanical properties of the new polymer blends, we noted the desired increase in the tensile strength, and the impact strength showed a decrease in hardness, in particular at the presence of 5 m/m% PU. Therefore, for further improvement, hybrid nanobiocomposites with 5 m/m% PU and organically modified montmorillonite (MMT) (Cloisite 30®B) were produced. The nanoadditive was used in a typical amount of 1-3 m/m%. It was found that the obtained nanobiocomposites containing the smallest amount of nanofillers, i.e., 1 m/m% Cloisite®30B, exhibited the best mechanical and thermal properties.
Collapse
Affiliation(s)
- Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Anna Czerniecka-Kubicka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, al. Tadeusza Rejtana 16C, 35-310 Rzeszow, Poland;
| | - Anita Białkowska
- Faculty of Chemical Engineering and Commodity Science, University of Technology and Humanities, Chrobrego 27, 26-600 Radom, Poland; (A.B.); (M.B.)
| | - Mohamed Bakar
- Faculty of Chemical Engineering and Commodity Science, University of Technology and Humanities, Chrobrego 27, 26-600 Radom, Poland; (A.B.); (M.B.)
| | - Karol Hęclik
- Department of Biotechnology and Bioinformatic, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland; (K.H.); (L.D.)
| | - Lucjan Dobrowolski
- Department of Biotechnology and Bioinformatic, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland; (K.H.); (L.D.)
| | - Michał Longosz
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| |
Collapse
|
6
|
Darweesh MH, El‐Taweel SH, Stoll B. Miscibility and rigid amorphous phase in blends of polypropylene with poly(propylene‐co‐ethylene). J Appl Polym Sci 2022. [DOI: 10.1002/app.52711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamed H. Darweesh
- Engineering and Materials Science Department German University in Cairo New Cairo City Egypt
| | - Safaa H. El‐Taweel
- Chemistry Department, Faculty of Science Cairo University Orman‐Giza Egypt
| | - Bernhard Stoll
- Abteilung Angewandte Physik University of Ulm Ulm Germany
| |
Collapse
|
7
|
Majerczak K, Wadkin‐Snaith D, Magueijo V, Mulheran P, Liggat J, Johnston K. Polyhydroxybutyrate: a review of experimental and simulation studies on the effect of fillers on crystallinity and mechanical properties. POLYM INT 2022. [DOI: 10.1002/pi.6402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Majerczak
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Dominic Wadkin‐Snaith
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Vitor Magueijo
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Paul Mulheran
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - John Liggat
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Karen Johnston
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| |
Collapse
|
8
|
Valorization of agro-wastes for the biosynthesis and characterization of polyhydroxybutyrate by Bacillus sp. isolated from rice bran dumping yard. 3 Biotech 2021; 11:202. [PMID: 33927992 DOI: 10.1007/s13205-021-02722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Investigations have been made to determine the usage of inexpensive agro-waste products as an alternative carbon source for the production of degradable bacterial polyester. Among 33 bacterial isolates, a gram-positive bacterium PPECLRB-16 isolated from rice bran dumping yard was found to accumulate a relatively higher quantity of PHB and identified as Bacillus sp. through 16S rRNA gene sequence analysis. The higher PHB producing bacterial isolate was grown with different inexpensive agro-wastes to determine the suitable carbon source for its growth and PHB production. The one-factor-at-a-time approach comparatively enhanced PHB yield (5.64 g/L) when grown for 48 h with 1.5% (w/v) of defatted oil cake at a pH of 7.0. The bacterially accumulated PHB was isolated from the cells, purified, and characterized using solid-state 13C NMR, FT-IR, Powder XRD, TGA, GPC, Tensile and HR-SEM analyses. The hydrophobicity and printing accessibility of recovered PHB were demonstrated using contact angle measurement by coating on different surfaces. The results obtained in the present investigation have thrown light on the potential usage of agro-waste by-products, mainly oil cake, as an appropriate carbon source for the commercial production of PHB by Bacillus sp. in a cost-effective way.
Collapse
|
9
|
Barbosa J, Perin GB, Felisberti MI. Plasticization of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) with an Oligomeric Polyester: Miscibility and Effect of the Microstructure and Plasticizer Distribution on Thermal and Mechanical Properties. ACS OMEGA 2021; 6:3278-3290. [PMID: 33553946 PMCID: PMC7860244 DOI: 10.1021/acsomega.0c05765] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
In the last few decades, many efforts have been made to make poly(3-hydroxybutyrate) (PHB) and its copolymers more suitable for industrial production and large-scale use. Plasticization, especially using biodegradable oligomeric plasticizers, has been one of the strategies for this purpose. However, PHB and its copolymers generally present low miscibility with plasticizers. An understanding of the plasticizer distribution between the mobile and rigid amorphous phases and how this influences thermal, mechanical, and morphological properties remains a challenge. Herein, formulations of poly(hydroxybutyrate-co-valerate) (PHBV) plasticized with an oligomeric polyester based on lactic acid, adipic acid, and 1,2-propanediol (PLAP) were prepared by melt extrusion. The effects of the PLAP content on the processability, miscibility, and microstructure of the semicrystalline PHBV and on the thermal, morphological, and mechanical properties of the formulations were investigated. The compositions of the mobile and rigid amorphous phases of the PHBV/PLAP formulations were easily estimated by combining dynamic mechanical data and the Fox equation, which showed a heterogeneous distribution of PLAP in these two phases. An increase in the PLAP mass fraction in the formulations led to progressive changes in the composition of the amorphous phases, an increase of both crystalline lamellae and interlamellar layer thickness, and a decrease in the melting and glass transition temperatures as well as the PHBV stiffness. The Flory-Huggins interaction parameter varied with the formulation composition in the range of -0.299 to -0.081. The critical PLAP mass fraction of 0.37 obtained from thermodynamic data is close to the value estimated from dynamic mechanical analysis (DMA) data and the Fox equation. The mechanical properties showed a close relationship with the distribution of PLAP in the rigid and mobile amorphous phases as well as with the microstructure of the crystalline phase of PHBV in the formulations.
Collapse
|
10
|
Krishnan S, Chinnadurai GS, Ravishankar K, Raghavachari D, Perumal P. Statistical augmentation of polyhydroxybutyrate production by Isoptericola variabilis: Characterization, moulding, in vitro cytocompatibility and biodegradability evaluation. Int J Biol Macromol 2020; 166:80-97. [PMID: 33096176 DOI: 10.1016/j.ijbiomac.2020.10.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to explore the production of polyhydroxybutyrate (PHB), a polyhydroxyalkanoate (PHA), which has been widely considered as a potential substitute for the synthetic polymers. Among 53 actinomycete isolates, 11 of them were found to be PHB positive and the quantity of PHB from the positive isolates varied from 10.5 to 29.82 wt% on a dry cell weight basis. A strain designated as PPLAT 012, accumulated relatively higher PHB and has been identified as Isoptericola variabilis by 16S rRNA gene sequence analysis. An effort has also been made to optimize the PHB production by the hyper-producing strain using the conventional, one-factor-at-a-time, and statistical response surface methodologies and the maximum PHB production (46.18%) in DSMZ medium, amended with 12% glucose and 9% potassium nitrate with a pH of 7.0. Further, the characteristic properties such as processability, cytocompatibility and biodegradability of the extracted PHB was also demonstrated. The physical properties of the recovered PHB was further improved by blending with PLA and the resultant blends were characterized. The present investigation has demonstrated that the isolate, Isoptericola variabilis, could be utilized as a potential source for the production of PHB with desirable characteristics, suitable for biomedical applications.
Collapse
Affiliation(s)
- Sivakumar Krishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Gandhi Shree Chinnadurai
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Kartik Ravishankar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Palani Perumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
11
|
El-Taweel SH, Al-Ahmadi AO. Thermal behavior and soil biodegradation for blends of poly(hydroxybutyrate)/ethylene vinyl acetate copolymer (EVA 60) with 1 mass% NH4Cl. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
El-Taweel SH, Al-Ahmadi AO. Isothermal Crystallization Kinetics of Poly (3-hydroxybutyrate/ Poly(ethylene-co-vinyl acetate) Blends Enhanced by NH4Cl as a Nucleating Agent. J MACROMOL SCI B 2019. [DOI: 10.1080/00222348.2019.1593620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Safaa H. El-Taweel
- Chemistry Department Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Chemistry Department Faculty of Science, Cairo University, Orman-Giza, Egypt
| | - Arwa O. Al-Ahmadi
- Chemistry Department Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
13
|
Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater 2018; 71:225-234. [PMID: 29501818 DOI: 10.1016/j.actbio.2018.02.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/11/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
Progress in tissue engineering is dependent on the availability of suitable biomaterials. In an effort to overcome the brittleness of poly(3-hydroxybutyrate), P(3HB), a natural biodegradable polyester, and widen its biomedical applications, plasticising of P(3HB) with oligomeric substances of related structure has been studied. A biosynthesised medium-chain-length polyhydroxyalkanoate (mcl-PHA) copolymer, the plasticiser precursor, was obtained using vegetable waste frying oil as a sole carbon source. The mcl-PHA was transformed into an oligomeric derivative by acid hydrolysis. The plasticising effect of the oligomeric mcl-PHA on P(3HB) was studied via characterisation of thermal and mechanical properties of the blends in the course of ageing at ambient conditions. Addition of oligomeric mcl-PHA to P(3HB) resulted in softer and more flexible materials based entirely on PHAs. It was shown that the oligomeric mcl-PHA transformed highly crystalline P(3HB) into materials with a dominant amorphous phase when the content of oligomeric mcl-PHA exceeded 10 wt%. In vitro biocompatibility studies of the new binary PHA materials showed high viability and proliferation of C2C12 myoblast cells. Thus, the proposed approach for P(3HB) plasticisation has the potential for the generation of more pliable biomaterials based on P(3HB) which can find application in unique soft tissue engineering applications where a balance between stiffness, tensile strength and ductility is required. STATEMENT OF SIGNIFICANCE Polyhydroxyalkanoates, a broad family of natural biodegradable and biocompatible polymers, have emerged as highly promising biomaterials both for bulk and biomedical applications. Here we describe an approach to tune the mechanical properties of stiff and brittle poly(3-hydroxybutyrate) and thereby to expand its potential biomedical applications. Plasticisation, a common practice in the plastic industry to modify polymer mechanical properties, has been used very cautiously for biomedical applications due to plasticiser toxicity and migration. We have developed a plasticiser for poly(3-hydroxybutyrate) based on a structurally related but softer and pliable medium chain length polyhydroxyalkanoate. Additives of oligomeric derivatives of this polymer improved ductility of poly(3-hydroxybutyrate), greatly widening the future applicability of this well-established biomaterial. In parallel, the binary polyhydroxyalkanoate materials also exhibited improved cell attachment and proliferation, a highly desirable outcome.
Collapse
|
14
|
McLauchlin AR, Ghita OR. Studies on the thermal and mechanical behavior of PLA-PET blends. J Appl Polym Sci 2016. [DOI: 10.1002/app.44147] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew R. McLauchlin
- Mathematics and Physical Sciences, College of Engineering; University of Exeter; Exeter EX4 4QF, UK
| | - Oana R. Ghita
- Mathematics and Physical Sciences, College of Engineering; University of Exeter; Exeter EX4 4QF, UK
| |
Collapse
|
15
|
Torres MG, Talavera JRR, Muñoz SV, Pérez MG, Castro MPC, Cortes JC, Muñoz RAE. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate). Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Righetti MC, Tombari E, Di Lorenzo ML. The role of the crystallization temperature on the nanophase structure evolution of poly[(R)-3-hydroxybutyrate]. J Phys Chem B 2013; 117:12303-11. [PMID: 24020615 DOI: 10.1021/jp4063127] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nanophase structure of semicrystalline polymers, which determines the mechanical, thermal, and gas permeability behavior, can be quantified by thermal methods. A detailed investigation of the nanophase structure of poly[(R)-3-hydroxybutyrate] (PHB) was performed under conditions of isothermal, quasi-isothermal, and nonisothermal crystallizations. The experimental analyses revealed that the establishment of the nanophase rigid amorphous fraction (RAF) in PHB depends on the temperature at which crystallization occurs. The RAF grows in parallel with the crystal phase during quasi-isothermal crystallization at 30 °C, whereas during nonisothermal crystallization at higher temperatures, RAF starts to develop at 70 °C, in correspondence with the final stages of the crystallization process. The influence of crystallization temperature on the nanophase structure was rationalized taking into account the effect of the mobility of the entangled chain segments during the phase transition. The melting behavior was found to change after isothermal crystallization at 70 °C, revealing that complete RAF mobilization is achieved approximately at this temperature. The temperature of 70 °C could be the limit for the formation and the disappearance of rigid amorphous fraction in the PHB analyzed in the present study.
Collapse
Affiliation(s)
- Maria Cristina Righetti
- Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici, INSTM, UdR Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
| | | | | |
Collapse
|
17
|
El-Taweel SH. Effect of Benzoic Acid on the Crystallization Behavior of Poly(3-Hydroxybutyrate). J MACROMOL SCI B 2013. [DOI: 10.1080/00222348.2013.810006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. H. El-Taweel
- a Engineering and Materials Science Department , German University in Cairo , New Cairo City , Egypt
- b Chemistry Department, Faculty of Science , Cairo University , Orman , Giza , Egypt
| |
Collapse
|
18
|
El-Taweel SH, Stoll B. Spherulitic Growth Rate of Blends of Polyhydroxybutyrate (PHB) with Oligomeric Atactic PHB-diol. J MACROMOL SCI B 2011. [DOI: 10.1080/00222348.2011.609781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S. H. El-Taweel
- a Engineering and Materials Science Department , German University in Cairo , New Cairo City , Egypt
- b Chemistry Department, Faculty of Science , Cairo University , Orman , Giza , Egypt
| | - B. Stoll
- a Engineering and Materials Science Department , German University in Cairo , New Cairo City , Egypt
| |
Collapse
|
19
|
Androsch R. Surface structure of folded-chain crystals of poly(R-3-hydroxybutyrate) of different chain length. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
|
21
|
Schexnaydre RJ, Mitchell BS. Solid state blending of poly(ethylene terephthalate) with polystyrene: Extent of PET amorphization and compositional effects on crystallizability. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/polb.21469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
|
23
|
The domain structure and mobility of semi-crystalline poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): A solid-state NMR study. POLYMER 2007. [DOI: 10.1016/j.polymer.2007.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Androsch R. Melt-crystallization, glass transition and morphology of a (R)-3-hydroxybutyrate pentamer. Eur Polym J 2007. [DOI: 10.1016/j.eurpolymj.2006.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Picciochi R, Wang Y, Alves NM, Mano JF. Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid Polym Sci 2006. [DOI: 10.1007/s00396-006-1590-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Dacko P, Kowalczuk M, Janeczek H, Sobota M. Physical Properties of the Biodegradable Polymer Compositions Containing Natural Polyesters and their Synthetic Analogues. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/masy.200690098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Zhao Q, Cheng G, Li H, Ma X, Zhang L. Synthesis and characterization of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
El-Taweel SH, Stoll B, Höhne GWH, Mansour AA, Seliger H. Stress-strain behavior of blends of bacterial polyhydroxybutyrate. J Appl Polym Sci 2004. [DOI: 10.1002/app.21215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|