1
|
Bozbay R, Orakdogen N. Tailoring amino-functionalized n-alkyl methacrylate ester-based bio-hybrids for adsorption of methyl orange dye: Controllable macromolecular architecture via polysaccharide-integrated ternary copolymerization. Int J Biol Macromol 2025; 299:140034. [PMID: 39855512 DOI: 10.1016/j.ijbiomac.2025.140034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Controllable macromolecular architecture formation via polysaccharide integrated ternary copolymerization was explored in the design of amino-functionalized n-alkyl methacrylate ester-based biohybrids. Ternary poly(dimethylaminoethyl methacrylate-co-glycidyl methacrylate-co-hydroxypropyl methacrylate)/sodium-alginate, PDGH/ALG, hybrids were designed using anionic polysaccharide through in-situ radical polymerization. An insight into the effect of ALG on physicochemical structure of ternary hybrids, particularly the interactions between polymeric chains, was created. In addition to incorporation of ALG, the effect of polymerization under cryocondition on mechanical stiffness of hybrids was investigated. Adding 0.5 % ALG to ternary PDGH matrix resulted in a 4.2-fold increase in compressive modulus. Swelling of hybrid hydrogels prepared at 1 °C decreased by 5 times, while a 3.4-fold decrease was observed in hybrid cryogels formed at -18 °C. ALG-rich hybrids showed "salting-in" behavior with increasing salt concentration in NaCl, KCl and MgCl2 solutions, while hybrids with low ALG-content exhibited "salting-out" behavior. The hybrid gels were applied to adsorption of anionic dye methyl orange (MO) from simulated dye wastewater. The adsorption was found to follow Freundlich mechanism and a pseudo-second-order kinetic model. ALG-integrated hybrid gels showed a high desorption efficiency and a longer lifespan during the regeneration process, thus showing potential to be used for anionic dye removal from textile wastewater in industry.
Collapse
Affiliation(s)
- Rabia Bozbay
- Graduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey
| | - Nermin Orakdogen
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
2
|
Li S, Liu Y, Fan L, Zhu J, Wang L. Preparation and characterization of polysaccharide-based conductive hydrogels for nerve repair. Int J Biol Macromol 2024; 282:136910. [PMID: 39476905 DOI: 10.1016/j.ijbiomac.2024.136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Peripheral nerve injury is a serious medical condition, but the limited availability of autologous grafts often delays timely treatment for many patients. The implantation of functional hydrogels with good biocompatibility provides an effective solution to this challenge. In this study, a novel chitosan derivative, choline functionalized catechol carboxymethyl chitosan (CF-Catechol-CMCS), was synthesized by modifying carboxymethyl chitosan (CMCS) with choline functionalized (CF) molecule and catechol. CF-Catechol-CMCS, sodium alginate (SA), and pyrrole monomer (Py) were then combined, crosslinked with Fe3+ and Ca2+, and polymerized in situ to form polypyrrole (PPy), resulting in the CF-Catechol-CMCS/SA/PPy hydrogel. This hydrogel exhibits excellent thermal stability, with a maximum thermal degradation temperature of 580 °C. By adjusting the ratio of PPy to CF-Catechol-CMCS/SA in the hydrogel, its degradation properties, swelling behavior, mechanical properties, and electrical conductivity can be fine-tuned. Specifically, when the mass ratio of PPy to CF-Catechol-CMCS/SA is 8:10, the hydrogel achieves optimal conductivity within a safe range (1.82 × 10-3 S·cm-1). By controlling the mass ratio of CF-Catechol-CMCS to SA in the hydrogel, the acetylcholine concentration can be regulated. When the CF-Catechol-CMCS:SA ratio is 2:1, the measured Sciatic Function Index (SFI) value is -34.54, indicating that the CF-Catechol-CMCS/SA/PPy hydrogel has excellent nerve repair potential.
Collapse
Affiliation(s)
- Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lili Fan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiang Zhu
- Department of Orthopedics, The First Affifiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Uysal Y, Doğaroğlu ZG, Makas MN, Çaylali Z. Boosting Water Retention in Agriculture: Vine Biochar-Doped Hydrogels' Swelling and Germination Effects. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300254. [PMID: 38745560 PMCID: PMC11090214 DOI: 10.1002/gch2.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/26/2023] [Indexed: 05/16/2024]
Abstract
Water scarcity presents a formidable challenge to agriculture, particularly in arid, semiarid, and rainfed settings. In agricultural contexts, hydrogels serve as granular agents for water retention, undergoing considerable expansion upon water exposure. They assume versatile roles encompassing soil-water retention, the dispensation of nutrients and pesticides, seed encapsulation, erosion mitigation, and even food supplementation. This study's objective involves the examination of biochar-infused hydrogels, fashioned by incorporating vine pruning waste-derived biochars, and the assessment of swelling behaviors in various aqueous environments encompassing deionized, tap, and saline water at concentrations of 0.5-1%. Characterizations of the vine-biochars-VB and biochar-incorporated hydrogels-VBHG are executed, with particular attention to their swelling properties across diverse media. As an initial step toward appraising their agricultural relevance, these hydrogels are introduced to a germination medium featuring wheat seeds to discern potential influences on germination dynamics. The maximum swelling capacity of VBHG is recorded in deionized water, tap water at pH 7.0, tap water at pH 9.0, saline water at 0.5%, and saline water at 1%, reaching 352%, 207%, 230%, 522%, and 549%, respectively. Remarkably, the 0.5% VBHG treatment exhibits the most pronounced root elongation. The application of hydrogels in agriculture exhibits promise, particularly within drought-related contexts and potential soilless applications.
Collapse
Affiliation(s)
- Yağmur Uysal
- Mersin University Engineering Faculty Environmental Engineering Department Mersin 33343 Turkey
| | - Zeynep Görkem Doğaroğlu
- Mersin University Engineering Faculty Environmental Engineering Department Mersin 33343 Turkey
| | - Mehmet Nuri Makas
- Mersin University Engineering Faculty Environmental Engineering Department Mersin 33343 Turkey
| | - Zehranur Çaylali
- Mersin University Engineering Faculty Environmental Engineering Department Mersin 33343 Turkey
| |
Collapse
|
4
|
Yuan J, Xu J. Synthesis of Amphiphilic Block Copolymer and Its Application in Pigment-Based Ink. MATERIALS (BASEL, SWITZERLAND) 2024; 17:330. [PMID: 38255498 PMCID: PMC10821111 DOI: 10.3390/ma17020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024]
Abstract
Amphiphilic block copolymers-based aqueous color inks show great potential in the field of visual communication design. However, the conventional step-by-step chemistry employed to synthesize the amphiphilic block copolymers is intricate, with low yield and high economic and environmental costs. In this work, we present a novel method for preparing an amphiphilic AB di-block copolymer of PCL-b-PAA by employing a combined polymerization strategy that involves both cationic ring-opening polymerization (ROP) of the ε-caprolactone monomer and the reversible addition-fragmentation chain-transfer (RAFT) polymerization on the acrylic acid monomer simultaneously. The corresponding polycaprolactone (PCL) and polyacrylic acid (PAA) serve as the hydrophobic and hydrophilic units, respectively. The effectiveness of the amphiphilic AB di-block copolymer as the polymeric pigment dispersant for water-based color inks is evaluated. The amphiphilic AB di-block copolymer of PCL-b-PAA exhibits a molecular weight of 1400 g mol-1, which is consistent with the theoretical value and suitable for polymeric dispersant application. The high surface excess (Γmax) of the PCL-b-PAA in water indicates a densely packed molecular morphology at the water/air interface. Additionally, micelles can be stably formed in the aqueous PCL-b-PAA solution at very low concentrations by demonstrating a low CMC value of 10-4 wt% and a micelle dimension of approximately 30 nm. The model ink dispersion is prepared using organic dyes (Disperse Yellow 232) and the amphiphilic block copolymer of PCL-b-PAA. The dispersion demonstrates near-Newtonian behavior, which is highly favorable for the application as inkjet ink. Furthermore, the ink dispersion displays a low viscosity, making it particularly suitable for visual communication design and printing purposes. Moreover, the ink dispersion demonstrates an unimodal distribution of the particle size, with an average diameter of approximately 500 nm. It retains exceptional stability of dispersion and even conducts a thermal aging treatment at 60 °C for 5 days. This work presents a facile and efficient synthetic strategy and molecular design of AB di-block copolymer-based dispersants for dye dispersions.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Art and Design, Taiyuan University, Taiyuan 237016, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Zhou J, Zhang Y, Zhang J, Zhang D, Zhou X, Xiong J. Breathable Metal-Organic Framework Enhanced Humidity-Responsive Nanofiber Actuator with Autonomous Triboelectric Perceptivity. ACS NANO 2023; 17:17920-17930. [PMID: 37668183 DOI: 10.1021/acsnano.3c04022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Autonomous object manipulation and perception with environmental factor-triggered and self-powered actuation is one of the most attractive directions for developing next-generation soft robotics with a smart human-machine-environment interface. Humidity, as a sustainable energy source ubiquitous in the surrounding environment, can be used for triggering smart grippers. In this work, it is proposed that by contacts between the gripper and objects upon humidity-induced actuation, real-time distinguishable triboelectric signals can be generated to realize the humidity-driven object manipulation and identification. Herein, a thermo-modified electrospun polyvinylpyrrolidone/poly(acrylic acid)/MIL-88A (T-PPM) nanofibrous film with micro-to-nano cross-scale porosity is developed, and a bilayer humidity-responsive actuator (T-HRA) was designed, mimicking the tamariskoid spikemoss to enhance the humidity-driven actuation. The breathing effect of MIL-88A and hierarchical porous structure of the T-PPM facilitate moisture diffusion and offer huge actuation (2.41 cm-1) with a fast response (0.084 cm-1 s-1). For autonomous object manipulation perception, T-PPM was verified as a tribo-positive material located between paper and silk. Accordingly, the T-HRA was demonstrated as a smart soft gripper that generates a different electric signal upon contact with objects of different material. This work proposes a concept of soft robots that are interactive with the environment for both autonomous object manipulation and information acquisition.
Collapse
Affiliation(s)
- Jiahui Zhou
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiwei Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Jia Y, Hsu YI, Uyama H. A starch-based, crosslinked blend film with seawater-specific dissolution characteristics. Carbohydr Polym 2023; 299:120181. [PMID: 36876796 DOI: 10.1016/j.carbpol.2022.120181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Existing biodegradable plastics may not be ideal replacements of petroleum-based single-use plastics owing to their slow biodegradation in seawater. To address this issue, a starch-based blend film with different disintegration/dissolution speeds in freshwater and seawater was prepared. Poly(acrylic acid) segments were grafted onto starch; a clear and homogenous film was prepared by blending the grafted starch with poly(vinyl pyrrolidone) (PVP) by solution casting. After drying, the grafted starch was crosslinked with PVP by hydrogen bonds, owing to which the water stability of the film is higher than that of unmodified starch films in fresh water. In seawater, the film dissolves quickly as a result of disruption of the hydrogen bond crosslinks. This technique balances degradability in marine environment and water resistance in everyday environment, provides an alternative route to mitigate marine plastic pollution and could be potentially useful for single-use applications in different fields such as packaging, healthcare, and agriculture.
Collapse
Affiliation(s)
- Yuxiang Jia
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Japan.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Japan.
| |
Collapse
|
7
|
Ajaz N, Abbas A, Afshan R, Irfan M, Khalid SH, Asghar S, Munir MU, Rizg WY, Majrashi KA, Alshehri S, Alissa M, Majrashi M, Bukhary DM, Hussain G, Rehman F, Khan IU. In Vitro and In Vivo Evaluation of Hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) Semi-Interpenetrating Matrices of Dexamethasone Sodium Phosphate. Pharmaceuticals (Basel) 2022; 15:1399. [PMID: 36422529 PMCID: PMC9692809 DOI: 10.3390/ph15111399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2024] Open
Abstract
In this paper, we fabricated semi-interpenetrating polymeric network (semi-IPN) of hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) (HP-β-CD-g-poly(AA)/PVP) by the free radical polymerization technique, intended for colon specific release of dexamethasone sodium phosphate (DSP). Different proportions of polyvinyl pyrrolidone (PVP), acrylic acid (AA), and hydroxypropyl-beta-cyclodextrin (HP-β-CD) were reacted along with ammonium persulphate (APS) as initiator and methylene-bis-acrylamide (MBA) as crosslinker to develop a hydrogel system with optimum swelling at distal intestinal pH. Initially, all formulations were screened for swelling behavior and AP-8 was chosen as optimum formulation. This formulation was capable of releasing a small amount of drug at acidic pH (1.2), while a maximum amount of drug was released at colonic pH (7.4) by the non-Fickian diffusion mechanism. Fourier transformed infrared spectroscopy (FTIR) revealed successful grafting of components and development of semi-IPN structure without any interaction with DSP. Thermogravimetric analysis (TGA) confirmed the thermal stability of developed semi-IPN. X-ray diffraction (XRD) revealed reduction in crystallinity of DSP upon loading in the hydrogel. The scanning electron microscopic (SEM) images revealed a rough and porous hydrogel surface. The toxicological evaluation of semi-IPN hydrogels confirmed their bio-safety and hemocompatibility. Therefore, the prepared hydrogels were pH sensitive, biocompatible, showed good swelling, mechanical properties, and were efficient in releasing the drug in the colonic environment. Therefore, AP-8 can be deemed as a potential carrier for targeted delivery of DSP to treat inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Anum Abbas
- Foundation University Medical College, Islamabad 44000, Pakistan
| | - Rabia Afshan
- Women Medical College, Abbottabad 22020, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24211, Saudi Arabia
| | - Ghulam Hussain
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
8
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Mahdy SR, Awadallah‐F A, Khalil SA. Radiation initiated synthesis of (carboxymethyl cellulose/polyacryalmide) hydrogels with polyprotic acid moieties and their utilization in nicotinic acid release. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sanna R. Mahdy
- Radiation Chemistry Department National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority Cairo Egypt
| | - Ahmed Awadallah‐F
- Radiation Research of Polymer Department National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority Cairo Egypt
| | - Salwa A. Khalil
- Radiation Chemistry Department National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority Cairo Egypt
| |
Collapse
|
10
|
Ajaz N, Khan IU, Irfan M, Khalid SH, Asghar S, Mehmood Y, Asif M, Usra, Hussain G, Shahzad Y, Shah SU, Munir MU. In Vitro and Biological Characterization of Dexamethasone Sodium Phosphate Laden pH-Sensitive and Mucoadhesive Hydroxy Propyl β-Cyclodextrin-g-poly(acrylic acid)/Gelatin Semi-Interpenetrating Networks. Gels 2022; 8:290. [PMID: 35621588 PMCID: PMC9140464 DOI: 10.3390/gels8050290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The current study reports the fabrication and biological evaluation of hydroxy propyl β-cyclodextrin-g-poly(acrylic acid)/gelatin (HP-β-CD-g-poly(AA)/gelatin) semi-interpenetrating networks (semi-IPN) for colonic delivery of dexamethasone sodium phosphate (DSP). The prepared hydrogels showed pH-dependent swelling and mucoadhesive properties. The mucoadhesive strength of hydrogels increased with an increasing concentration of gelatin. Based on the swelling and mucoadhesive properties, AG-1 was chosen as the optimized formulation (0.33% w/w of gelatin and 16.66% w/w of AA) for further analysis. FTIR revealed the successful development of a polymeric network without any interaction with DSP. SEM images revealed a slightly rough surface after drug loading. Drug distribution at the molecular level was confirmed by XRD. In vitro drug release assay showed pH-dependent release, i.e., a minute amount of DSP was released at a pH of 1.2 while 90.58% was released over 72 h at pH 7.4. The optimized formulation did not show any toxic effects on a rabbit's vital organs and was also hemocompatible, thus confirming the biocompatible nature of the hydrogel. Conclusively, the prepared semi-IPN hydrogel possessed the necessary features, which can be exploited for the colonic delivery of DSP.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Usra
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.); (G.H.)
| | - Ghulam Hussain
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.); (G.H.)
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54700, Pakistan;
| | - Shefaat Ullah Shah
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
11
|
Abid U, Pervaiz F, Shoukat H, Rehman S, Abid S. Fabrication and characterization of novel semi-IPN hydrogels based on xanthan gum and polyvinyl pyrrolidone-co-poly (2-acrylamido-2-methyl propane sulfonic acid) for the controlled delivery of venlafaxine. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1995421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Usman Abid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sobia Abid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
12
|
Wang X, Gou C, Gao C, Song Y, Zhang J, Huang J, Hui M. Synthesis of casein-γ-polyglutamic acid hydrogels by microbial transglutaminase-mediated gelation for controlled release of drugs. J Biomater Appl 2021; 36:237-245. [PMID: 34293946 DOI: 10.1177/08853282211011724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Casein-based hydrogels were reported as biodegradability, biocompatibility, and non-toxic materials that had potential in drug delivery. At present, we prepared two kinds of casein/γ-PGA hybrid hydrogels, 1/5 and 1/9, based on the ratio of γ-PGA to casein. The hydrogels were crosslinked by microbial transglutaminase (MTG), the physicochemical properties of the casein/γ-PGA hydrogels were investigated by scanning electron microscopy (SEM) observation, differential scanning calorimetry (DSC) analysis, texture analysis, swelling ratio test, and stability test. The hydrogels showed a well-interconnected sparse and porous structure. The 1/5 casein/γ-PGA hydrogel was much stable, hard, and cohesive than the 1/9 casein/γ-PGA hydrogel, and the 1/5 casein/γ-PGA hydrogel showed a higher swelling ratio and lower degradation rate. To investigate in vitro release behavior, we chose the hydrophilic vitamin B12 and hydrophobic aspirin as the model drugs incorporated into the casein/γ-PGA hydrogels. The 1/5 casein/γ-PGA hydrogel exhibited a good drug release behavior.
Collapse
Affiliation(s)
- Xin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Chenchen Gou
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Chunyuan Gao
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yazhen Song
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jinming Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jihong Huang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Ming Hui
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Zhu C, Tang N, Gan J, Zhang X, Li Y, Jia X, Cheng Y. A pH-sensitive semi-interpenetrating polymer network hydrogels constructed by konjac glucomannan and poly (γ-glutamic acid): Synthesis, characterization and swelling behavior. Int J Biol Macromol 2021; 185:229-239. [PMID: 34119552 DOI: 10.1016/j.ijbiomac.2021.06.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022]
Abstract
A novel pH-sensitive semi-interpenetrating polymer network (semi-IPN) hydrogel was prepared by using konjac glucomannan (KGM) and poly (γ-glutamic acid) (γ-PGA) with sodium trimetaphosphate (STMP) as the crosslinking agent. The structure of the semi-IPN hydrogels was characterized by FTIR spectra, thermogravimetric analysis (TGA), X-ray diffraction (XRD), rheological measurements, and scanning electron microscopy (SEM). The pH-sensitive effects were investigated by calculating the equilibrium swelling ratio (ESR) in buffer solutions (pH 2, 4, 6, and 8, respectively) at 37 °C. These results showed that the content of cross-linker and γ-PGA has a significant influence on the hydrogels' structure and swelling behavior. In vitro drug release behavior of semi-IPN hydrogels was investigated under simulated gastric and intestinal fluids using model drug Nicotinamide (NTM), and various models were applied to describe the drug release behaviors. The obtained results indicated that our synthesized semi-IPN hydrogel had the potential to be used as a suitable biomaterial carrier for functional components or drug delivery in the intestine.
Collapse
Affiliation(s)
- Chongyang Zhu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong 264000, PR China
| | - Xiaojun Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yang Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
14
|
Fathi M, Ahmadi N, Forouhar A, Hamzeh Atani S. Natural Hydrogels, the Interesting Carriers for Herbal Extracts. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1885436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nadia Ahmadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ali Forouhar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Saied Hamzeh Atani
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
15
|
A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor. Carbohydr Polym 2020; 248:116797. [DOI: 10.1016/j.carbpol.2020.116797] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 01/19/2023]
|
16
|
Nayak S, Prasad SR, Mandal D, Das P. Carbon dot cross-linked polyvinylpyrrolidone hybrid hydrogel for simultaneous dye adsorption, photodegradation and bacterial elimination from waste water. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122287. [PMID: 32066019 DOI: 10.1016/j.jhazmat.2020.122287] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
The creation of a polymeric hydrogel from polyvinylpyrrolidone (PVP) cross-linked by Carbon Quantum Dots (CD) for the adsorption and photocatalytic degradation of both cationic and anionic dyes. PVP, an important biocompatible constituent and often surplus in cosmetic industry, was carboxylated through NaOH refluxing and covalently conjugated to surface amine functionality of CD derived from lemon juice and Cysteamine. The hybrid hydrogel was obtained from PVP-CD covalent conjugate by careful manipulation of pH and found to possess better rheological properties than only carboxylate-PVP. The monolayer physisorption of the dyes on the hydrogel was affected by hydrogen bonding, dispersion or inductive effect, and π-π interaction with the polymer backbone as well as the CD that followed pseudo-second-order kinetics. Degradation of the adsorbed dyes was instated by the unique Reactive Oxygen Species (ROS) generating ability of the CD embedded in the hydrogel matrix upon exposure to sunlight, the mechanism of which is also unveiled. The same CD-induced ROS was found to effectively annihilate both gram-positive and gram-negative bacteria in real polluted water in less than 10 min of photoexcitation of the hydrogel. The hydrogel was restored by mild acid wash that is able to perform dye adsorption and photo-degradation upto four cycles.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801103, Bihar, India
| | - Surendra Rajit Prasad
- National Institute of Pharmaceutical Education and Research, Hajipur, 844102, Bihar, India
| | - Debabrata Mandal
- National Institute of Pharmaceutical Education and Research, Hajipur, 844102, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801103, Bihar, India.
| |
Collapse
|
17
|
Guo Z, Gu H, He Y, Zhang Y, Xu W, Zhang J, Liu Y, Xiong L, Chen A, Feng Y. Dual dynamic bonds enable biocompatible and tough hydrogels with fast self-recoverable, self-healable and injectable properties. CHEMICAL ENGINEERING JOURNAL 2020; 388:124282. [DOI: 10.1016/j.cej.2020.124282] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Antifouling and antibacterial behaviors of capsaicin-based pH responsive smart coatings in marine environments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110361. [DOI: 10.1016/j.msec.2019.110361] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
19
|
Hajikarimi A, Sadeghi M. Free radical synthesis of cross-linking gelatin base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2020-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Bou Haidar N, Marais S, Dé E, Schaumann A, Barreau M, Feuilloley MGJ, Duncan AC. Chronic wound healing: A specific antibiofilm protein-asymmetric release system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110130. [PMID: 31753364 DOI: 10.1016/j.msec.2019.110130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
Chronic infection is a major cause of delayed wound-healing. It is recognized to be associated with infectious bacterial communities called biofilms. Currently used conventional antibiotics alone often reveal themselves ineffective, since they do not specifically target the wound biofilm. Here, we report a new conceptual tool aimed at overcoming this drawback: an antibiofilm drug delivery system targeting the bacterial biofilm as a whole, by inhibiting its formation and/or disrupting it once it is formed. The system consists of a micro/nanostructured poly(butylene-succinate-co-adipate) (PBSA)-based asymmetric membrane (AM) with controlled porosity. By the incorporation of hydrophilic porogen agents, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), we were able to obtain AMs with high levels of porosity, exhibiting interconnections between pores. The PBSA-PEG membrane presented a dense upper layer with pores small enough to block bacteria penetration. Upon using such porogen agents, under dry and wet conditions, membrane's integrity and mechanical properties were maintained. Using bovine serum albumin (BSA) as a model protein, we demonstrated that protein loading and release from PBSA membranes were affected by the membrane structure (porosity) and the presence of residual porogen. Furthermore, the release curve profile consisted of a fast initial slope followed by a second slow phase approaching a plateau within 24 h. This can be highly beneficial for the promotion of wound healing. Cross-sectional confocal laser scanning microscopy (CLSM) images revealed a heterogeneous distribution of fluorescein isothiocyanate (FITC) labeled BSA throughout the entire membrane. PBSA membranes were loaded with dispersin B (DB), a specific antibiofilm matrix enzyme. Studies using a Staphylococcus epidermidis model, indicate significant efficiency in both inhibiting or dispersing preformed biofilm (up to 80 % eradication). The asymmetric PBSA membrane prepared with the PVP porogen (PBSA-PVP) displayed highest antibiofilm activity. Moreover, in vitro cytotoxicity assays using HaCaT and reconstructed human epidermis (RHE) models revealed that unloaded and DB-loaded PBSA-PVP membranes had excellent biocompatibility suitable for wound dressing applications.
Collapse
Affiliation(s)
- Naila Bou Haidar
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Stéphane Marais
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Emmanuelle Dé
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Annick Schaumann
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Magalie Barreau
- Normandie Univ, UNIRouen Normandie, LMSM EA4312, 27000 Evreux, France
| | | | - Anthony C Duncan
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| |
Collapse
|
21
|
Demeter M, Călina I, Vancea C, Şen M, Kaya MGA, Mănăilă E, Dumitru M, Meltzer V. E-Beam Processing of Collagen-Poly(N-vinyl-2-pyrrolidone) Double-Network Superabsorbent Hydrogels: Structural and Rheological Investigations. Macromol Res 2019. [DOI: 10.1007/s13233-019-7041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Dexamethasone-Loaded Chitosan Beads Coated with a pH-Dependent Interpolymer Complex for Colon-Specific Drug Delivery. INT J POLYM SCI 2019. [DOI: 10.1155/2019/4204375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chitosan (CS) microparticles loaded with dexamethasone were prepared by spray drying, followed by coating with a pH-dependent interpolymer complex based on poly(acrylic acid)/poly(vinyl pyrrolidone) using an water-in-oil emulsion technique. The aim of this research was to evaluate the influence of PAA/PVP coating on the release of dexamethasone from loaded chitosan microparticles, in simulated gastric fluid (SGF, pH=1.2) and simulated intestinal fluid (SIF, pH=6.8). The release of dexamethasone from uncoated loaded CS microparticles was similar in both fluids, and almost complete release of the drug was achieved in 5 hours. In the coated loaded CS microparticles, the release of dexamethasone in SGF was reduced considerably, very close to zero, due to the interpolymer complex formation at low pH, demonstrating that this system applied as pH-dependent coating has a potential as a site-specific delivery system.
Collapse
|
23
|
Ghorbani S, Eyni H, Bazaz SR, Nazari H, Asl LS, Zaferani H, Kiani V, Mehrizi AA, Soleimani M. Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x18060044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Morphological Characterization of Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Choudhury S, Ray SK. Efficient removal of cationic dye mixtures from water using a bio-composite adsorbent optimized with response surface methodology. Carbohydr Polym 2018; 200:305-320. [DOI: 10.1016/j.carbpol.2018.07.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023]
|
26
|
Gonzalez NE, El-Halah Blanco AR, Contreras Ramirez JM, Rojas de Gascue BH. Estudio de la capacidad de absorción en hidrogeles semi-interpenetrados de poliacrilamida/poli(hidroxibutirato-co-hidroxivalerato). REVISTA COLOMBIANA DE QUÍMICA 2018. [DOI: 10.15446/rev.colomb.quim.v47n3.69280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se sintetizaron hidrogeles semi-interpenetrados (semi-IPN) obtenidos a partir de acrilamida (AAm) y el biopolímero poli(hidroxibutirato-co-hidroxivalerato) (P(HB-co-HV)) de diferente masa molar (Mv). El análisis de la estructura química de los materiales se realizó mediante espectroscopia FT-IR. Los resultados sugirieron la incorporación del P(HB-co-HV) dentro de la red entrecruzada de la poliacrilamida (PAAm), lo que indicó que el hidrogel semi-IPN fue sintetizado. Adicionalmente, se analizaron muestras del gel seco semi-IPN a través de calorimetría diferencial de barrido. Se siguió gravimétricamente el comportamiento de hinchamiento de los hidrogeles en agua y se analizó el efecto de la composición porcentual y del porcentaje de reactivo entrecruzante (N,N’-metilenbisacrilamida, MBAAm) sobre los mecanismos de transporte de agua. Los resultados obtenidos indicaron que los hidrogeles semi-IPN se hinchan menos que el hidrogel de PAAm pura, lo que se atribuyó al carácter hidrófobo del biopolímero incorporado dentro de la red entrecruzada del material. Se calculó el exponente de difusión de los hidrogeles (n) y en todos los casos se obtuvo que n < 0,50. Por tanto, el proceso de difusión es menos Fickiano, lo que significa que la rapidez de penetración del agua es mucho menor que la velocidad de relajación de las cadenas de polímero.
Collapse
|
27
|
Bashir S, Teo YY, Ramesh S, Ramesh K. Synthesis and characterization of karaya gum-g- poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur J Pharm Biopharm 2018; 124:95-103. [DOI: 10.1016/j.ejpb.2017.12.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
29
|
Ijaz QA, Abbas N, Arshad MS, Hussain A, Shahiq-uz-Zaman, Javaid Z. Synthesis and evaluation of pH dependent polyethylene glycol- co -acrylic acid hydrogels for controlled release of venlafaxine HCl. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Cheng Y, Huang C, Yang D, Ren K, Wei J. Bilayer hydrogel mixed composites that respond to multiple stimuli for environmental sensing and underwater actuation. J Mater Chem B 2018; 6:8170-8179. [DOI: 10.1039/c8tb02242a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogel composites with pre-programmed shapes serve as environmental monitoring alarms and underwater actuators.
Collapse
Affiliation(s)
- Yu Cheng
- College of Materials Science and Engineering, Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Chao Huang
- College of Materials Science and Engineering, Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dian Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge
- Massachusetts 02138
- USA
| | - Kai Ren
- College of Materials Science and Engineering, Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jie Wei
- College of Materials Science and Engineering, Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers
- Beijing 100029
| |
Collapse
|
31
|
Soma D, Jin RH. Free-standing disk mold crystalline polyethyleneimine gels: physical properties and chemical function in mineralization. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4125-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Huo Q, Liu D, Zhao J, Li J, Chen R, Liu S. Construction and water absorption capacity of a 3D network-structure starch-g-poly(sodium acrylate)/PVP Semi-Interpenetrating-Network superabsorbent resin. STARCH-STARKE 2017. [DOI: 10.1002/star.201700091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Quan Huo
- Hebei Key Laboratory of Applied Chemistry, College of Environmental & Chemical Engineering; Yanshan University; Qinhuangdao Hebei P.R. China
| | - Dong Liu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental & Chemical Engineering; Yanshan University; Qinhuangdao Hebei P.R. China
- Sanying Precision Instruments Company Limited; Tianjin P.R. China
| | - Jingjing Zhao
- Hebei Key Laboratory of Applied Chemistry, College of Environmental & Chemical Engineering; Yanshan University; Qinhuangdao Hebei P.R. China
| | - Jianshu Li
- Hebei Key Laboratory of Applied Chemistry, College of Environmental & Chemical Engineering; Yanshan University; Qinhuangdao Hebei P.R. China
| | - Rongna Chen
- Hebei Key Laboratory of Applied Chemistry, College of Environmental & Chemical Engineering; Yanshan University; Qinhuangdao Hebei P.R. China
| | - Suyan Liu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental & Chemical Engineering; Yanshan University; Qinhuangdao Hebei P.R. China
| |
Collapse
|
33
|
Lai E, Wang Y, Wei Y, Li G, Ma G. Effects of Cross-Link Density on Structures and Properties of Dual-Sensitive Semi-Interpenetrating Polymer Networks Hydrogel Microspheres. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Enping Lai
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; Shanghai 201620 P. R. China
| | - Yuxia Wang
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; Shanghai 201620 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
34
|
Zhang Y, Hu C, Xiang X, Diao Y, Li B, Shi L, Ran R. Self-healable, tough and highly stretchable hydrophobic association/ionic dual physically cross-linked hydrogels. RSC Adv 2017. [DOI: 10.1039/c7ra00055c] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this work, we describe a novel method for the production of tough and highly stretchable hydrogels with self-healing behavior, tensile strength of 150–300 kPa and stretch at break of 2400–2800%.
Collapse
Affiliation(s)
- Yulin Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chengxin Hu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xu Xiang
- Chengdu Product Quality Supervision and Inspection Institute
- Chengdu 610065
- China
| | - Yongfu Diao
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Binwei Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Linying Shi
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Rong Ran
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
35
|
Mohammed AD, Young DA, Vosloo HCM. Synthesis of high-performance superabsorbent glycerol acrylate-cross-linked poly (acrylic acid). RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Gao C, Liu M, Chen J, Chen C. pH- and Temperature-Responsive P(DMAEMA-GMA)-Alginate Semi-IPN Hydrogels Formed by Radical and Ring-Opening Polymerization for Aminophylline Release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 23:1039-54. [PMID: 21513583 DOI: 10.1163/092050611x570653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel poly((2-dimethylamino) ethyl methacrylate-glycidyl methacrylate)-alginate (P(DMAEMA-GMA)alginate) semi-IPN hydrogel was synthesized via radical polymerization of the double bonds and ring-opening of the epoxy groups without using catalyst and cross-linker. (1)H-NMR, FT-IR and DSC data were consistent with the expected structures for the hydrogels. The interior morphology of the hydrogels was also investigated by SEM. The swelling ratio and compressive strength of the hydrogels were measured. The semi-IPN hydrogel had pH and temperature sensitivity, and pH-sensitive points of all hydrogels were found to be at pH 5.0. The release behavior of the model drug, aminophylline, was found to be dependent on the hydrogel composition and environment pH, which manifests that these materials have potential applications as intelligent drug carriers.
Collapse
Affiliation(s)
- Chunmei Gao
- a State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | | | | | | |
Collapse
|
37
|
Li J, Shin GH, Lee IW, Chen X, Park HJ. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Lim SL, Tang WNH, Ooi CW, Chan ES, Tey BT. Rapid swelling and deswelling of semi-interpenetrating network poly(acrylic acid)/poly(aspartic acid) hydrogels prepared by freezing polymerization. J Appl Polym Sci 2016. [DOI: 10.1002/app.43515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Swee Lu Lim
- Chemical Engineering Discipline; School of Engineering, Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Willie Ngee Hon Tang
- Department of Chemical and Biomolecular Engineering; University of Melbourne; Victoria 3010 Australia
| | - Chien Wei Ooi
- Chemical Engineering Discipline; School of Engineering, Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
- Advanced Engineering Platform; Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline; School of Engineering, Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
- Advanced Engineering Platform; Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline; School of Engineering, Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
- Advanced Engineering Platform; Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| |
Collapse
|
39
|
Ren Y, Lou R, Liu X, Gao M, Zheng H, Yang T, Xie H, Yu W, Ma X. A self-healing hydrogel formation strategy via exploiting endothermic interactions between polyelectrolytes. Chem Commun (Camb) 2016; 52:6273-6. [DOI: 10.1039/c6cc02472f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a strategy to synthesize self-healing hydrogels via exploiting endothermic interactions between polyelectrolytes.
Collapse
Affiliation(s)
- Ying Ren
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Ruyun Lou
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Xiaocen Liu
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Meng Gao
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Huizhen Zheng
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Ting Yang
- Energy Research Resources Division
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Hongguo Xie
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Weiting Yu
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Xiaojun Ma
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
40
|
Banerjee SL, Khamrai M, Kundu PP, Singha NK. Synthesis of a self-healable and pH responsive hydrogel based on an ionic polymer/clay nanocomposite. RSC Adv 2016. [DOI: 10.1039/c6ra01074a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This investigation reports the preparation of a pH responsive self-healing nanocomposite hydrogel based on ionic polymer and organically modified montmorillonite (OMMT) clay.
Collapse
Affiliation(s)
| | - Moumita Khamrai
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata
- India
| | - P. P. Kundu
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata
- India
| | - Nikhil K. Singha
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|
41
|
Preparation and Characteristics of Corn Straw-Co-AMPS-Co-AA Superabsorbent Hydrogel. Polymers (Basel) 2015. [DOI: 10.3390/polym7111522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Ying H, He G, Zhang L, Lei Q, Guo Y, Fang W. Hyperbranched polyglycerol/poly(acrylic acid) hydrogel for the efficient removal of methyl violet from aqueous solutions. J Appl Polym Sci 2015. [DOI: 10.1002/app.42951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Ying
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Guijin He
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Lifeng Zhang
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Qunfang Lei
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Yongsheng Guo
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Wenjun Fang
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 People's Republic of China
| |
Collapse
|
43
|
Li J, Ma L, Chen G, Zhou Z, Li Q. A high water-content and high elastic dual-responsive polyurethane hydrogel for drug delivery. J Mater Chem B 2015; 3:8401-8409. [PMID: 32262893 DOI: 10.1039/c5tb01702e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stimuli-responsive hydrogels are soft, biocompatible and smart biomaterials; however, the poor mechanical properties of the hydrogels limit their application. Herein, we prepared a reductant- and light-responsive polyurethane hydrogel which was made of polyethylene glycol, 1,6-diisocyanatohexane, azobenzene, cyclodextrin and disulfide. Attenuated Total Reflectance Infrared Spectra and 1H NMR were used to characterize the structure of the hydrogel. The hydrogel has a high elasticity (a tensile modulus of 36.5 ± 0.5 kPa and a storage modulus of 52.9 ± 1.2 kPa) at a high water content (91.2 ± 0.4%). Swelling, mechanical and rheological properties of the hydrogel can be tuned by the content of the crosslinker, light and reductant. The hydrogel has low cytotoxicity and it can be used for drug delivery. Ultraviolet irradiation helped to load drugs and the reductant accelerated the drug release. With its high mechanical properties and light- and reductant-responsiveness, the hydrogel is hopefully to be used as a drug carrier.
Collapse
Affiliation(s)
- Jinze Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
44
|
Seo S, Lee J, Kwon MS, Seo D, Kim J. Stimuli-Responsive Matrix-Assisted Colorimetric Water Indicator of Polydiacetylene Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20342-20348. [PMID: 26299689 DOI: 10.1021/acsami.5b06058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An alternative signal transduction mechanism of polydiacetylene (PDA) sensors is devised by combining stimuli-responsive polymer hydrogel as a matrix and PDA sensory materials as a signal-generating component. We hypothesized that volumetric expansion of the polymer hydrogel matrix by means of external stimuli can impose stress on the imbedded PDA materials, generating a sensory signal. PDA assembly as a sensory component was ionically linked with the alginate hydrogel in order to transfer the volumetric expansion force of alginate hydrogel efficiently to the sensory PDA molecules. Under the same swelling ratio of alginate hydrogel, alginate gel having embedded 1-dimensional thin PDA nanofibers (∼20 nm diameter) presented a sharp color change while 0-dimensional PDA liposome did not give any sensory signal when it was integrated in alginate gel. The results implied that dimensionality is an important design factor to realize stimuli-responsive matrix-driven colorimetric PDA sensory systems; more effective contact points between 1-dimensional PDA nanofibers and the alginate matrix much more effectively transfer the external stress exerted by the volumetric expansion force, and thin PDA nanofibers respond more sensitively to the stress.
Collapse
Affiliation(s)
- Sungbaek Seo
- Macromolecular Science and Engineering, ‡Materials Science and Engineering, §Chemistry, ∥Chemical Engineering, and ⊥Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jiseok Lee
- Macromolecular Science and Engineering, ‡Materials Science and Engineering, §Chemistry, ∥Chemical Engineering, and ⊥Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Min Sang Kwon
- Macromolecular Science and Engineering, ‡Materials Science and Engineering, §Chemistry, ∥Chemical Engineering, and ⊥Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Deokwon Seo
- Macromolecular Science and Engineering, ‡Materials Science and Engineering, §Chemistry, ∥Chemical Engineering, and ⊥Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jinsang Kim
- Macromolecular Science and Engineering, ‡Materials Science and Engineering, §Chemistry, ∥Chemical Engineering, and ⊥Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm 2015; 94:322-32. [DOI: 10.1016/j.ejpb.2015.06.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/14/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022]
|
46
|
Polyakova IV, Sverlova NA, Groshikova AR, Pisarev OA, Panarin EF. Low-basic anion exchangers based on glycidyl methacrylate for selective sorption of endotoxin. RUSS J APPL CHEM+ 2015. [DOI: 10.1134/s1070427215020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Kim YJ, Lee J. Translational and rotational motion control of microgels enabling shoaling and schooling. SOFT MATTER 2015; 11:994-1000. [PMID: 25519985 DOI: 10.1039/c4sm02450h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A technique for adequate flow control is important in the fields of science and engineering. In this study, we hypothesized that the unrestricted flow control inside a chamber containing 'schools of magnetic particles' might be possible through control of an external magnetic field, biomimicking the flow generated by schools of fish. Microgels based on superparamagnetic iron oxide nanoparticles (SPIONs) and poly(acrylic acid) hydrogels were employed. With an increase in the SPION content, the microgels responded more efficiently to the translational movement of the magnetic field. Rotational movement was more efficiently achieved with anisotropic distribution of SPIONs inside microgels, which was induced by applying a magnetic field immediately prior to crosslinking. The systems of the anisotropic microgels successfully provided microflow for effective mixing in a capillary. This biomimetic flow control may be useful for the control of fluid systems of any micro- or nano-size and any shape, regardless of the tortuosity.
Collapse
Affiliation(s)
- You-Jin Kim
- Department of Chemical Engineering and Materials Science, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea.
| | | |
Collapse
|
48
|
Ganguly S, Das NC. Synthesis of a novel pH responsive phyllosilicate loaded polymeric hydrogel based on poly(acrylic acid-co-N-vinylpyrrolidone) and polyethylene glycol for drug delivery: modelling and kinetics study for the sustained release of an antibiotic drug. RSC Adv 2015. [DOI: 10.1039/c4ra16119j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we developed a novel pH-sensitive composite interpenetrating polymeric network (IPN) hydrogel based on polyethylene gylcol (PEG) and poly(acrylic acid-co-N-vinylpyrrolidone) crosslinked with N,N-methylenebisacrylamide (MBA).
Collapse
Affiliation(s)
- Sayan Ganguly
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Narayan C. Das
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
49
|
Study of Swelling Properties and Thermal Behavior of Poly(N,N-Dimethylacrylamide-co-Maleic Acid) Based Hydrogels. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/147398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogels copolymers N,N-dimethylacrylamide (DMA) and maleic acid (MA) were prepared by free-radical polymerization at 56°C in aqueous solution, using N,N-methylenebisacrylamide (NMBA) as cross-linking agent and potassium persulfate (KPS) as initiator. The effects of comonomer composition, cross-linker content, and variation of pH solutions on the swelling behavior of polymers were investigated. The obtained results showed an increase of the swelling of poly(N,N-dimethylacrylamide-co-maleic acid) (P(DMA-MAx)) as the content of maleic acid increases in the polymeric matrix, while they indicate a great reduction of the degree of swelling as the cross-linking agent ratio increases. It was also shown that the swelling of copolymer hydrogels increased with the increase of pH and the maximum extent was reached at pH 8.7 in all compositions. Fourier transform infrared spectroscopy (FTIR) revealed the existence of hydrogen bonding interactions between the carboxylic groups of MA and the carbonyl groups of DMA. Differential scanning calorimetry analysis (DSC) showed an increase of the glass-transition temperature (Tg) as concentrations of MA and NMBA increased. Thermogravimetric analysis (TGA) of copolymers was performed to investigate the degradation mechanism.
Collapse
|
50
|
Characterization and swelling–deswelling properties of wheat straw cellulose based semi-IPNs hydrogel. Carbohydr Polym 2014; 107:232-40. [DOI: 10.1016/j.carbpol.2014.02.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 09/16/2013] [Accepted: 02/22/2014] [Indexed: 11/22/2022]
|