1
|
Wu CH, Huang LH, Hua CC. Oligomer-assisted self-assembly of bisurea in organic solvent media. Phys Chem Chem Phys 2024; 26:3810-3814. [PMID: 37955161 DOI: 10.1039/d3cp04464e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We report on molecular dynamics simulation evidence revealing that an oligomer additive can be used to greatly facilitate the self-assembly of a bisurea in organic solvent media, through the initial regular packing and the subsequent stiffening of the self-assembly filament. The underlying physics is attributed to the substantially reduced diffusivities of the solute and, in particular, solvent molecules, featuring a generally weakened (thermal) Brownian force under ambient conditions. Without such oligomer-induced molecular cooling-in contrast to the usual external cooling, the original solvent medium is noted to foster instead more stabilized and disordered aggregates and, in particular, it would require a temperature reduction that is practically inaccessible in order to sustain similar stiffness of the self-assembly filament. These features, in accord with recent experimental observations, highlight the open opportunity of promoting the self-assembly of small functional molecules in general solvent media without requiring substantial changes of the system temperature, as is crucial for many practical applications including the biological/biomedical ones.
Collapse
Affiliation(s)
- Ching-Hung Wu
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Ling-Hua Huang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Chi-Chung Hua
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| |
Collapse
|
2
|
Liu C, Hu W, Jiang H, Liu G, Han CC, Sirringhaus H, Boué F, Wang D. Chain Conformation and Aggregation Structure Formation of a High Charge Mobility DPP-Based Donor–Acceptor Conjugated Polymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chang Liu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxian Hu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanqiu Jiang
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Charles C. Han
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - François Boué
- Laboratoire Léon Brillouin, UMR 12 CEA-CNRS-UPSay,
CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li C, Wu Y, Li G, Zhang Y, Ma X, Fang Y, Li W, Tian Z. Aggregation Behavior of Acylated Pepsin-Solubilized Collagen Based on Fluorescence Spectrum Technology. APPLIED SPECTROSCOPY 2020; 74:391-399. [PMID: 32031012 DOI: 10.1177/0003702820903817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aggregation behavior of collagen-based materials plays an important role in their processing because it could affect their physicochemical properties. Based on the intrinsic fluorescence characteristic of tyrosine, fluorescence spectrum technology was used to investigate the aggregation state of the acylated collagen molecules in aqueous solution. The results showed that the aggregate degree of the acylated collagen was higher than that of the native collagen due to the hydrophobic interaction. With the increase of concentrations of the acylated collagen or at NaCl higher than 40 mmol/L, the aggregate degree of the acylated collagen molecules increased. When the pH was close to the isoelectric point of the acylated collagen, the hydrophobic interaction and the hydrogen bond helped to increase the aggregation degree. However, with the increase of temperature (10-70 ℃), the aggregation state of the acylated collagen decreased gradually due to the quenching, the molecular collision, and the broken of hydrogen bonds. Furthermore, two-dimensional correlation spectroscopy (2D-COS) showed that the response order was 360 > 305 nm at various acylated collagen and NaCl (>40 mmol/L) concentrations, while the response order was 305 > 360 nm when the pH value was increased from 5.0 to 9.0. Temperature-dependent 2D-COS showed there were four bands that occurred and the response order was listed as follows: 293 > 305 > 360 > 420 nm. In brief, the results might provide an important guide for molding processes of the acylated collagen.
Collapse
Affiliation(s)
- Conghu Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Yan Wu
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Guoying Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Zhang
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Xinghong Ma
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Yifan Fang
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Wenjuan Li
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
4
|
Yi HL, Hua CC. PBTTT-C 16 sol-gel transition by rod associations and networking. SOFT MATTER 2019; 15:8022-8031. [PMID: 31565725 DOI: 10.1039/c9sm01362h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A low-molecular-weight poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (designated as Lw-pBTTT-C16) in a fair solvent (chlorobenzene, CB) displays peculiar structural, mechanical, and electronic features during sol-gel transition. Using comprehensive (multiscale) dynamic/static analysis schemes, the Lw-pBTTT-C16/CB solution (10 mg mL-1) is shown to capitalize on rod associations and networking to form a gel, in stark contrast with its high-molecular-weight companion previously reported to form gels through hierarchical colloidal bridging. The present study reveals, however, that the molecular weight of pBTTT-C16 has a subtle impact on the gelation behaviors through the rarely recognized, contrasting supramolecular conformations (rod-like vs. wormlike) of the aggregate clusters fostered in the pristine solution. The ac conductivity nearly doubles as a result of improved (mesoscale) packing of cylindrical aggregates near the gel state as well as enhanced backbone rigidity of the constituting chains. Other distinguishing features include: (1) there is no real crossover of the dynamic moduli (G' and G'') upon increasing the temperature from gel (T = 15 °C) to solution (T = 80 °C) states. (2) The gel is about a hundredfold softer in dynamic modulus, yet more resilient with a fivefold increase in the yield strain. Both viscoelastic features are expected to greatly benefit the gel processability. (3) The coexistent microgels and cylinder (aggregate) bundles form a peculiar gel network that has not been reported previously with polymer or colloidal gels. The overall findings provide new mechanistic insight into the phenomenological effects of molecular weight for the pBTTT-Cn series in solution, sol, gel, and thin film.
Collapse
Affiliation(s)
- Han-Liou Yi
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Chi-Chung Hua
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
5
|
Yi HL, Hua CC. PBTTT-C 16 sol-gel transition by hierarchical colloidal bridging. SOFT MATTER 2018; 14:1270-1280. [PMID: 29367967 DOI: 10.1039/c7sm02493b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A versatile conjugated polymer, poly(2,5-bis(3-hexadecyllthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C16, with Mw = 61 309 g mol-1), in a relatively good solvent (chlorobenzene, CB) medium is shown to produce gels through hierarchical colloidal bridging. Multiscale static/dynamic light and X-ray scattering analysis schemes along with complementary microscopy imaging techniques clearly reveal that upon cooling from the solution state at 80 °C to various gelation temperatures (5, 10, and 15 °C), rod-like colloidal pBTTT-C16 aggregates morph into spherical ones, triggering hierarchical colloid formation and bridging that eventually turn the solution into a gel after about one-day aging. A certain fraction of primal packing units-spherical gelators (∼1 nm in mean radius)-constitute the spherical building particles (∼10 nm) noted above, which in turn constitute loose-packing aggregate clusters (∼300 nm) in the sol state. As gelation proceeds, the aggregate cluster interiors tighten substantially, and micrometer-sized clusters (∼3 μm) formed by them begin to take shape and further interconnect to form the gel network (mean porosity size ∼240 nm and spatial inhomogeneity length ∼20 μm). Rheological measurements and kinetic analysis reveal that the gelation temperature can also have a notable impact on gel microstructure, gelation rate, and mechanical strength, resulting in, for instance, a prominently nonergodic and porous structure for the soft gel incubated at a higher temperature T = 15 °C. The ac conductivity exhibits a notable upturn near pBTTT-C16/CB gelation, well above those achieved by the counterpart pBTTT-C14 solutions, which, in interesting contrast, cannot be brought to the gel phase under similar experimental conditions.
Collapse
Affiliation(s)
- Han-Liou Yi
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| | | |
Collapse
|
6
|
Zhang M, Yang J, Yang Q, Huang L, Wu H, Chen L, Ding C. Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(γ-glutamic acid). Int J Biol Macromol 2018; 112:1156-1163. [PMID: 29425869 DOI: 10.1016/j.ijbiomac.2018.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
The poly(γ-glutamic acid)-NHS (γ-PGA-NHS) esters were used to endow collagen with both of excellent water-solubility and thermal stability via cross-linking reaction between γ-PGA-NHS and collagen. In the present work, the effect of γ-PGA-NHS on the aggregation of collagen molecules was studied by fluorescence techniques. The fluorescence emission spectra of pyrene in collagen solutions and the intrinsic fluorescence emission spectra of collagen suggested different effects of γ-PGA-NHS on collagen molecules: inhibiting aggregation below critical aggregation concentration (CAC) and promoting aggregation above CAC. The two-dimensional (2D) fluorescence correlation spectra indicated that the intermolecular hydrogen bonding and cross-linking between γ-PGA-NHS and collagen would influence the aggregation of collagen molecules. By the ultra-sensitive differential scanning calorimeter (VP-DSC), it was found that the main denaturational transition temperature (Tm2) of modified collagen increased, while its calorimetric enthalpy changes (ΔH2) decreased compared to those of native collagen, further indicating that the modification of γ-PGA-NHS influenced the aggregation of collagen molecules. The study provide useful information for the utilizing and or the processing of water-soluble collagen in aqueous solution in the fields such as cosmetics, health care products, tissue engineering and biomedical materials, etc.
Collapse
Affiliation(s)
- Min Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junhui Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qili Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liulian Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hui Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China.
| |
Collapse
|
7
|
Aggregation properties of MEH-PPV/PMMA blends in solution and thin film. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1169-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang Q, Ran Q, Zhao H, Shu X, Yang Y. Effect of counterions on comb-like polycarboxylate conformation in aqueous solutions. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1192043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qian Zhang
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing, Jiangsu, China
- Jiangsu Sobute New Materials Co. Ltd., Nanjing, Jiangsu, China
| | - Qianping Ran
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing, Jiangsu, China
- Jiangsu Sobute New Materials Co. Ltd., Nanjing, Jiangsu, China
| | - Hongxia Zhao
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing, Jiangsu, China
- Jiangsu Sobute New Materials Co. Ltd., Nanjing, Jiangsu, China
| | - Xin Shu
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing, Jiangsu, China
- Jiangsu Sobute New Materials Co. Ltd., Nanjing, Jiangsu, China
| | - Yong Yang
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing, Jiangsu, China
- Jiangsu Sobute New Materials Co. Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Bai W, Wu C, Shang X, Liu X, Chen K, Lin J. Self-assembly of poly(p-phenylene)-based flower-like 3D micro-nanostructures. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Fluorescence study on the aggregation of collagen molecules in acid solution influenced by hydroxypropyl methylcellulose. Carbohydr Polym 2016; 136:224-31. [DOI: 10.1016/j.carbpol.2015.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/21/2015] [Accepted: 09/09/2015] [Indexed: 11/17/2022]
|
11
|
Bai W, Wu C, Shang X, Cai L, Lin J. Precipitation and sol formation from poly(p-phenylene)s solutions by spectroscopic study. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Guo RH, Hsu CH, Hua CC, Chen SA. Colloidal aggregate and gel incubated by amorphous conjugated polymer in hybrid-solvent medium. J Phys Chem B 2015; 119:3320-31. [PMID: 25607342 DOI: 10.1021/acs.jpcb.5b00575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical valuable amorphous conjugated polymer, poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV), has been revealed to foster an abundance of micrometer-sized colloidal aggregates at relatively low concentration (below 1 wt %) in a hybrid-solvent medium that contains a nonsolvent, and the solution turned into gel by colloidal bridging after one-day aging at 30 °C. In contrast with typical polymer gels fostered by (anisotropic) chain cross-linking or planar packing on selective interacting sites, the MEH-PPV gel has been revealed (via dynamic light scattering, small-angle light scattering, time-sweep dynamic modulus and optical microscope) to first develop featureless aggregate clusters in solution and, as the solvent quality worsens with reduced system temperature, bridge themselves to form gel through a one-dimensional (1-D) to three-dimensional (3-D) kinetic pathway. Combined dynamic/static light scattering analyses, along with supporting scanning electron microscope image and molecular dynamics simulation, indicated a concomitant structural reorganization within the colloidal aggregates, where spontaneous chain packing was perceived to form local fiber-like materials that are elastic by nature (i.e., a q-independent decay rate). The near coincidence of the above-mentioned microscopic and macroscopic phase alterations led us to contend that similar fibrous materials have served as the exterior bridging agent to fabricate colloidal strands upon gelation. The present findings clarify previously enigmatic, much speculative, gelation phenomena of MEH-PPV, and shed light on the prospect of capitalizing on specific polymer-solvent interactions to incubate desirable colloidal aggregates and gels in room-temperature processing of practical valuable conjugated polymers.
Collapse
Affiliation(s)
- Rong H Guo
- Department of Chemical Engineering, National Chung Cheng University , Chiayi 621, Taiwan, Republic of China
| | | | | | | |
Collapse
|
13
|
|
14
|
Knaapila M, Monkman AP. Methods for controlling structure and photophysical properties in polyfluorene solutions and gels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1090-1108. [PMID: 23341026 DOI: 10.1002/adma.201204296] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Indexed: 06/01/2023]
Abstract
Knowledge of the phase behavior of polyfluorene solutions and gels has expanded tremendously in recent years. The relationship between the structure formation and photophysics is known at the quantitative level. The factors which we understand control these relationships include virtually all important materials parameters such as solvent quality, side chain branching, side chain length, molecular weight, thermal history and myriad functionalizations. This review describes advances in controlling structure and photophysical properties in polyfluorene solutions and gels. It discusses the demarcation lines between solutions, gels, and macrophase separation in conjugated polymers and reviews essential solid state properties needed for understanding of solutions. It gives an insight into polyfluorene and polyfluorene beta phase in solutions and gels and describes all the structural levels in solvent matrices, ranging from intramolecular structures to the diverse aggregate classes and network structures and agglomerates of these units. It goes on to describe the kinetics and thermodynamics of these structures. It details the manifold molecular parameters used in their control and continues with the molecular confinement and touches on permanently cross-linked networks. Particular focus is placed on the experimental results of archetypical polyfluorenes and solvent matrices and connection between structure and photonics. A connection is also made to the mean field type theories of hairy-rod like polymers. This altogether allows generalizations and provides a guideline for materials scientists, synthetic chemists and device engineers as well, for this important class of semiconductor, luminescent polymers.
Collapse
Affiliation(s)
- Matti Knaapila
- Physics Department, Institute for Energy Technology, 2027 Kjeller, Norway.
| | | |
Collapse
|