1
|
Zhu X, Qiang Y, Wang X, Fan M, Lv Z, Zhou Y, He B. Reversible immobilization of cellulase on gelatin for efficient insoluble cellulose hydrolysis. Int J Biol Macromol 2024; 273:132928. [PMID: 38897510 DOI: 10.1016/j.ijbiomac.2024.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Immobilized enzymes are one of the most common tools used in enzyme engineering, as they can substantially reduce the cost of enzyme isolation and use. However, efficient catalysis of solid substrates using immobilized enzymes is challenging, hydrolysis of insoluble cellulose by immobilized cellulases is a typical example of this problem. In this study, inspired by bees and honeycombs, we prepared gelatin-modified cellulase (BEE) and gelatin hydrogels (HONEYCOMB) to achieve reversible recycling versus release of cellulase through temperature-responsive changes in the triple-stranded helix-like interactions between BEE and HONEYCOMB. At elevated temperatures, BEE was released from HONEYCOMB and participated in hydrolytic saccharification. After 24 h, the glucose yields of both the free enzyme and BEE reached the same level. When the temperature was decreased, BEE recombined with HONEYCOMB to facilitate the effective separation and recycling of BEE from the system. The enzymatic system retained >70 % activity after four reuse cycles. In addition, this system showed good biocompatibility and environmental safety. This method increases the mass transfer capacity and enables easy recovery of immobilized cellulase, thereby serving as a valuable strategy for the immobilization of other enzymes.
Collapse
Affiliation(s)
- Xing Zhu
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yuanyuan Qiang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Mingliang Fan
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zuoyuan Lv
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yi Zhou
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bin He
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
El-Seedi HR, Said NS, Yosri N, Hawash HB, El-Sherif DM, Abouzid M, Abdel-Daim MM, Yaseen M, Omar H, Shou Q, Attia NF, Zou X, Guo Z, Khalifa SA. Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations. Heliyon 2023; 9:e16228. [PMID: 37234631 PMCID: PMC10205520 DOI: 10.1016/j.heliyon.2023.e16228] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The use of gelatin and gelatin-blend polymers as environmentally safe polymers to synthesis electrospun nanofibers, has caused a revolution in the biomedical field. The development of efficient nanofibers has played a significant role in drug delivery, and for use in advanced scaffolds in regenerative medicine. Gelatin is an exceptional biopolymer, which is highly versatile, despite variations in the processing technology. The electrospinning process is an efficient technique for the manufacture of gelatin electrospun nanofibers (GNFs), as it is simple, efficient, and cost-effective. GNFs have higher porosity with large surface area and biocompatibility, despite that there are some drawbacks. These drawbacks include rapid degradation, poor mechanical strength, and complete dissolution, which limits the use of gelatin electrospun nanofibers in this form for biomedicine. Thus, these fibers need to be cross-linked, in order to control its solubility. This modification caused an improvement in the biological properties of GNFs, which made them suitable candidates for various biomedical applications, such as wound healing, drug delivery, bone regeneration, tubular scaffolding, skin, nerve, kidney, and cardiac tissue engineering. In this review an outline of electrospinning is shown with critical summary of literature evaluated with respect to the various applications of nanofibers-derived gelatin.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu Education Department, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Noha S. Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hamada B. Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Dina M. El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nour F. Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A.M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| |
Collapse
|
3
|
Yang H, Liang S, Zhang P, Zhang X, Lu P, Liu Y, Cao X, Li Y, Wang Q. Improved CO2 separation performance of mixed matrix membranes via expanded layer double hydroxides and post-treated methanol. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Jaques A, Sánchez E, Orellana N, Enrione J, Acevedo CA. Modelling the growth of in-vitro meat on microstructured edible films. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Pępczyńska M, Díaz-Calderón P, Quero F, Matiacevich S, Char C, Enrione J. Interaction and fragility study in salmon gelatin-oligosaccharide composite films at low moisture conditions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Drying of pickering emulsions in a viscoelastic network of cellulose microfibrils. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Phase separation, antiplasticization and moisture sorption in ternary systems containing polysaccharides and polyols. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Díaz-Calderón P, MacNaughtan B, Hill S, Mitchell J, Enrione J. Reduction of enthalpy relaxation in gelatine films by addition of polyols. Int J Biol Macromol 2018; 109:634-638. [PMID: 29258897 DOI: 10.1016/j.ijbiomac.2017.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
The aim of this study was to evaluate the effect of plasticisers with different molecular weights (glycerol and sorbitol) on the structural relaxation kinetics of bovine gelatine films stored under the glass transition temperature (Tg). Plasticisers were tested at weight fractions of 0.0, 0.06 and 0.10. Films conditioned in environments under ∼44% relative humidity gave moisture contents (w/w) in the range 0.14-0.18. The enthalpy relaxation (ΔH) was determined using differential scanning calorimetry (DSC). Samples used had Tg values in the range 24-49 °C. After removing the thermal history (30 °C above Tg, 15 min), samples were isothermally stored at 10 °C below Tg for between 2 and 80 h. The addition of plasticisers induced a significant reduction in the rate of structural relaxation. The linearisation of ΔH by plotting against the logarithm of ageing time showed a reduction in the slope of samples plasticised with both polyols. The reduction in relaxation kinetics may be related to the ability of polyols to act as enhancers of molecular packing, as recently reported using positron spectroscopy (PALS). However, a direct correlation between the relaxation kinetics and the plasticiser's molecular weight could not be established, suggesting that this phenomenon may be governed by complex molecular gelatin-plasticiser-water interactions.
Collapse
Affiliation(s)
- Paulo Díaz-Calderón
- Biopolymer Research and Engineering Laboratory (BIOPREL), School of Nutrition and Dietetics, Universidad de los Andes, Chile. Monseñor Alvaro del Portillo 12.455, Las Condes, Santiago, Chile
| | - Bill MacNaughtan
- Division of Food Sciences, The University of Nottingham. Sutton Bonington Campus, Loughbourough LE12 5RD, United Kingdom
| | - Sandra Hill
- Division of Food Sciences, The University of Nottingham. Sutton Bonington Campus, Loughbourough LE12 5RD, United Kingdom
| | - John Mitchell
- Division of Food Sciences, The University of Nottingham. Sutton Bonington Campus, Loughbourough LE12 5RD, United Kingdom
| | - Javier Enrione
- Biopolymer Research and Engineering Laboratory (BIOPREL), School of Nutrition and Dietetics, Universidad de los Andes, Chile. Monseñor Alvaro del Portillo 12.455, Las Condes, Santiago, Chile.
| |
Collapse
|
9
|
Lerbret A, Affouard F. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration. J Phys Chem B 2017; 121:9437-9451. [PMID: 28920435 DOI: 10.1021/acs.jpcb.7b07082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, Tg, of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.
Collapse
Affiliation(s)
- Adrien Lerbret
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, UMR A 02.102, PAM, Procédés Alimentaires et Microbiologiques, F-21000 Dijon, France
| | - Frédéric Affouard
- Univ. Lille, CNRS, UMR 8207, UMET, Unité Matériaux Et Transformations, F-59000 Lille, France
| |
Collapse
|
10
|
Steyaert I, Rahier H, Van Vlierberghe S, Olijve J, De Clerck K. Gelatin nanofibers: Analysis of triple helix dissociation temperature and cold-water-solubility. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Ubbink J. Structural and thermodynamic aspects of plasticization and antiplasticization in glassy encapsulation and biostabilization matrices. Adv Drug Deliv Rev 2016; 100:10-26. [PMID: 26748258 DOI: 10.1016/j.addr.2015.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/21/2023]
Abstract
The structural and thermodynamic properties of glassy carbohydrate matrices for the encapsulation and biostabilization of sensitive bioactive compounds, such as pharmaceutically active proteins and oxidation-sensitive compounds, are reviewed in the context of the plasticization and antiplasticization of glassy carbohydrates of intermediate and high molecular weight by low molecular weight diluents. Plasticization and antiplasticization may be monitored either by dynamic measures or by structural and thermodynamic features of the glassy matrices. Specifically, it is demonstrated that the decrease in size of the molecular free volume holes with increasing diluent content, as determined by positron annihilation lifetime spectroscopy (PALS), is related to the antiplasticization of glassy carbohydrate matrices, resulting in increased barrier properties of the glassy matrix. As far as could be ascertained from the available data, the regimes as identified by PALS map on those detected by neutron scattering and dielectric spectroscopy for glassy matrices consisting of trehalose and the diluent glycerol. The review is concluded by a survey of the published results on the stability of bioactive compounds encapsulated in carbohydrate glasses and an overview of outstanding questions.
Collapse
|