1
|
Fu X, Wang Y, Xu L, Narumi A, Sato SI, Yang X, Shen X, Kakuchi T. Thermoresponsive Property of Poly( N, N-bis(2-methoxyethyl)acrylamide) and Its Copolymers with Water-Soluble Poly( N, N-disubstituted acrylamide) Prepared Using Hydrosilylation-Promoted Group Transfer Polymerization. Polymers (Basel) 2023; 15:4681. [PMID: 38139932 PMCID: PMC10747282 DOI: 10.3390/polym15244681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The group-transfer polymerization (GTP) of N,N-bis(2-methoxyethyl)acrylamide (MOEAm) initiated by Me2EtSiH in the hydrosilylation-promoted method and by silylketene acetal (SKA) in the conventional method proceeded in a controlled/living manner to provide poly(N,N-bis(2-methoxyethyl)acrylamide) (PMOEAm) and PMOEAm with the SKA residue at the α-chain end (MCIP-PMOEAm), respectively. PMOEAm-b-poly(N,N-dimethylacrylamide) (PDMAm) and PMOEAm-s-PDMAm and PMOEAm-b-poly(N,N-bis(2-ethoxyethyl)acrylamide) (PEOEAm) and PMOEAm-s-PEOEAm were synthesized by the block and random group-transfer copolymerization of MOEAm and N,N-dimethylacrylamide or N,N-bis(2-ethoxyethyl)acrylamide. The homo- and copolymer structures affected the thermoresponsive properties; the cloud point temperature (Tcp) increasing by decreasing the degree of polymerization (x). The chain-end group in PMOEAm affected the Tcp with PMOEAmx > MCIP-PMOEAmx. The Tcp of statistical copolymers was higher than that of block copolymers, with PMOEAmx-s-PDMAmy > PMOEAmx-b-PDMAmy and PMOEAmx-s-PEOEAmy > PMOEAmx-b-PEOEAmy.
Collapse
Affiliation(s)
- Xiangming Fu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan;
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
| | - Xiaoran Yang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| |
Collapse
|
2
|
Precise Synthesis and Thermoresponsive Property of Poly(ethyl glycidyl ether) and Its Block and Statistic Copolymers with Poly(glycidol). Polymers (Basel) 2021; 13:polym13223873. [PMID: 34833172 PMCID: PMC8623496 DOI: 10.3390/polym13223873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we describe a comprehensive study of the thermoresponsive properties of statistic copolymers and multiblock copolymers synthesized by poly(glycidol)s (PG) and poly(ethyl glycidyl ether) (PEGE) with different copolymerization methods. These copolymers were first synthesized by ring-opening polymerization (ROP), which was initiated by tert-butylbenzyl alcohol (tBBA) and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2Λ5,4Λ5-catenadi(phosphazene) (t-Bu-P4) as the catalyst, and then the inherent protective groups were removed to obtain the copolymers without any specific chain end groups. The thermoresponsive property of the statistic copolymer PGx-stat-PEGEy was compared with the diblock copolymer PGx-b-PEGEy, and the triblock copolymers were compared with the pentablock copolymers. Among them, PG-stat-PEGE, PG-b-PEGE-b-PG-b-PEGE-b-PG, and PEGE-b-PG-b-PEGE-b-PG-b-PEGE, and even the specific ratio of PEGE-b-PG-b-PEGE, exhibited LCST-type phase transitions in water, which were characterized by cloud point (Tcp). Although the ratio of x to y affected the value of the Tcp of PGx-stat-PEGEy, we found that the disorder of the copolymer has a decisive effect on the phase-transition behavior. The phase-transition behaviors of PG-b-PEGE, part of PEGE-b-PG-b-PEGE, and PG-b-PEGE-b-PG copolymers in water present a two-stage phase transition, that is, firstly LCST-type and then the upper critical solution temperature (UCST)-like phase transition. In addition, we have extended the research on the thermoresponsive properties of EGE homopolymers without specific α-chain ends.
Collapse
|
3
|
The Demulsification Properties of Cationic Hyperbranched Polyamidoamines for Polymer Flooding Emulsions and Microemulsions. Processes (Basel) 2020. [DOI: 10.3390/pr8020176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polymer flooding emulsions and microemulsions caused by tertiary oil recovery technologies are harmful to the environment due to their excellent stability. Two cationic hyperbranched polyamidoamines (H-PAMAM), named as H-PAMAM-HA and H-PAMAM-ETA, were obtained by changing the terminal denotation agents to H-PAMAM, which was characterized by 1H NMR, FT-IR, and amine possession, thereby confirmed the modification. Samples (300 mg/L) were added to the polymer flooding emulsion (1500 mg/L oil concentration) at 30 °C for 30 min and the H-PAMAM-HA and H-PAMAM-ETA were shown to perform at 88% and 91% deoil efficiency. Additionally, the increased settling time and the raised temperature enhanced performance. For example, an oil removal ratio of 97.7% was observed after dealing with the emulsion for 30 min at 60 °C, while 98.5% deoil efficiency was obtained after 90 min at 45 °C for the 300 mg/L H-PAMAM-ETA. To determine the differences when dealing with the emulsion, the interfacial tension, ζ potential, and turbidity measurements were fully estimated. Moreover, diametrically different demulsification mechanisms were found when the samples were utilized to treat the microemulsion. The modified demulsifiers showed excellent demulsification efficiency via their obvious electroneutralization and bridge functions, while the H-PAMAM appeared to enhance the stability of the microemulsion.
Collapse
|
4
|
Grinberg VY, Burova TV, Grinberg NV, Alvarez-Lorenzo C, Khokhlov AR. Protein-like energetics of conformational transitions in a polyampholyte hydrogel. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Zhan C, Fu XB, Yao Y, Liu HJ, Chen Y. Stimuli-responsive hyperbranched poly(amidoamine)s integrated with thermal and pH sensitivity, reducible degradability and intrinsic photoluminescence. RSC Adv 2017. [DOI: 10.1039/c6ra27390d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimuli-responsive HPA-C4s integrated with thermal and pH sensitivity, reducible degradability and intrinsic photoluminescence were successfully prepared and characterized.
Collapse
Affiliation(s)
- Chen Zhan
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Xiao-Bin Fu
- Department of Physics & Shanghai Key Laboratory of Magnetic Resonance
- East China Normal University
- Shanghai 200062
- People's Republic of China
| | - Yefeng Yao
- Department of Physics & Shanghai Key Laboratory of Magnetic Resonance
- East China Normal University
- Shanghai 200062
- People's Republic of China
| | - Hua-Ji Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|