1
|
Swaby S, Ureña N, Teresa Pérez-Prior M, del Río C, Várez A, Sanchez JY, Iojoiu C, Levenfeld B. Proton Conducting Sulfonated Polysulfone and Polyphenylsulfone Multiblock Copolymers with Improved Performances for Fuel Cell Applications. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
2
|
Igder A, Al-Antaki AHM, Pye SJ, Keshavarz A, Nosrati A, Raston CL. High shear vortex fluidic morphologically controlled polysulfone formed under anhydrous conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00834j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polysulfone (PSF) was prepared under anhydrous conditions in DMSO, under high shear in a vortex fluidic device (VFD) operating under confined mode thereby avoiding the use of chlorinated solvents, unlike in conventional batch processing.
Collapse
Affiliation(s)
- Aghil Igder
- School of Engineering
- Edith Cowan University
- Perth
- Australia
- Flinders Institute for Nanoscale Science and Technology
| | | | - Scott J. Pye
- Flinders Institute for Nanoscale Science and Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | | | - Ata Nosrati
- School of Engineering
- Edith Cowan University
- Perth
- Australia
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| |
Collapse
|
3
|
Schiavone MM, Lamparelli DH, Zhao Y, Zhu F, Revay Z, Radulescu A. The Effects of Temperature and Humidity on the Microstructure of Sulfonated Syndiotactic-polystyrene Ionic Membranes. MEMBRANES 2020; 10:E187. [PMID: 32824025 PMCID: PMC7466101 DOI: 10.3390/membranes10080187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Polymeric membranes based on the semi-crystalline syndiotactic-polystyrene (sPS) become hydrophilic, and therefore conductive, following the functionalization of the amorphous phase by the solid-state sulfonation procedure. Because the crystallinity of the material, and thus the mechanical strength of the membranes, is maintained and the resistance to oxidation decomposition can be improved by doping the membranes with fullerenes, the sPS becomes attractive for proton-exchange membranes fuel cells (PEMFC) and energy storage applications. In the current work we report the micro-structural characterization by small-angle neutron scattering (SANS) method of sulfonated sPS films and sPS-fullerene composite membranes at different temperatures between 20 °C and 80 °C, under the relative humidity (RH) level from 10% to 70%. Complementary characterization of membranes was carried out by FTIR, UV-Vis spectroscopy and prompt-γ neutron activation analysis in terms of composition, following the specific preparation and functionalization procedure, and by XRD with respect to crystallinity. The hydrated ionic clusters are formed in the hydrated membrane and shrink slightly with the increasing temperature, which leads to a slight desorption of water at high temperatures. However, it seems that the conductive properties of the membranes do not deteriorate with the increasing temperature and that all membranes equilibrated in liquid water show an increased conductivity at 80 °C compared to the room temperature. The presence of fullerenes in the composite membrane induces a tremendous increase in the conductivity at high temperatures compared to fullerenes-free membranes. Apparently, the observed effects may be related to the formation of additional hydrated pathways in the composite membrane in conjunction with changes in the dynamics of water and polymer.
Collapse
Affiliation(s)
- Maria-Maddalena Schiavone
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85747 Garching, Germany; (M.-M.S.); (F.Z.)
| | - David Hermann Lamparelli
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”, Università di Salerno, I-84084 Fisciano, Italy;
| | - Yue Zhao
- Department of Advanced Functional Materials Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), Watanuki-machi 1233, Takasaki 370-1292, Japan;
| | - Fengfeng Zhu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85747 Garching, Germany; (M.-M.S.); (F.Z.)
| | - Zsolt Revay
- Technische Universität Müchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II, Heinz Maier-Leibnitz Zentrum (MLZ), 85747 Garching, Germany;
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85747 Garching, Germany; (M.-M.S.); (F.Z.)
| |
Collapse
|
4
|
Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Patton S, Scheringer M, Trier X, Vierke L, Wang Z, DeWitt JC. The concept of essential use for determining when uses of PFASs can be phased out. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1803-1815. [PMID: 31204421 PMCID: PMC6992415 DOI: 10.1039/c9em00163h] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Because of the extreme persistence of per- and polyfluoroalkyl substances (PFASs) and their associated risks, the Madrid Statement argues for stopping their use where they are deemed not essential or when safer alternatives exist. To determine when uses of PFASs have an essential function in modern society, and when they do not, is not an easy task. Here, we: (1) develop the concept of "essential use" based on an existing approach described in the Montreal Protocol, (2) apply the concept to various uses of PFASs to determine the feasibility of elimination or substitution of PFASs in each use category, and (3) outline the challenges for phasing out uses of PFASs in society. In brief, we developed three distinct categories to describe the different levels of essentiality of individual uses. A phase-out of many uses of PFASs can be implemented because they are not necessary for the betterment of society in terms of health and safety, or because functional alternatives are currently available that can be substituted into these products or applications. Some specific uses of PFASs would be considered essential because they provide for vital functions and are currently without established alternatives. However, this essentiality should not be considered as permanent; rather, constant efforts are needed to search for alternatives. We provide a description of several ongoing uses of PFASs and discuss whether these uses are essential or non-essential according to the three essentiality categories. It is not possible to describe each use case of PFASs in detail in this single article. For follow-up work, we suggest further refining the assessment of the use cases of PFASs covered here, where necessary, and expanding the application of this concept to all other uses of PFASs. The concept of essential use can also be applied in the management of other chemicals, or groups of chemicals, of concern.
Collapse
Affiliation(s)
- Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691, Sweden.
| | | | - Dorte Herzke
- NILU, Norwegian Institute for Air Research, Tromsø, Norway
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Mark Miller
- National Institute of Environmental Health Sciences, U.S. Public Health Service, Research Triangle Park, NC, USA
| | - Carla A Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Xenia Trier
- DTU Technical University of Denmark, Copenhagen, Denmark
| | - Lena Vierke
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | - Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
5
|
Schiavone MM, Iwase H, Takata SI, Radulescu A. The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS. MEMBRANES 2019; 9:E136. [PMID: 31652905 PMCID: PMC6918273 DOI: 10.3390/membranes9110136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022]
Abstract
Membranes based on sulfonated synditoactic polystyrene (s-sPS) were thoroughly characterized by contrast variation small-angle neutron scattering (SANS) over a wide Q-range in dry and hydrated states. Following special sulfonation and treatment procedures, s-sPS is an attractive material for fuel cells and energy storage applications. The film samples were prepared by solid-state sulfonation, resulting in uniform sulfonation of only the amorphous phase while preserving the crystallinity of the membrane. Fullerenes, which improve the resistance to oxidation decomposition, were incorporated in the membranes. The fullerenes seem to be chiefly located in the amorphous regions of the samples, and do not influence the formation and evolution of the morphologies in the polymer films, as no significant differences were observed in the SANS patterns compared to the fullerenes-free s-sPS membranes, which were investigated in a previous study. The use of uniaxially deformed film samples, and neutron contrast variation allowed for the identification and characterization of different structural levels with sizes between nm and μm, which form and evolve in both the dry and hydrated states. The scattering length density of the crystalline regions was varied using the guest exchange procedure between different toluene isotopologues incorporated into the sPS lattice, while the variation of the scattering properties of the hydrated amorphous regions was achieved using different H2O/D2O mixtures. Due to the deformation of the films, the scattering characteristics of different structures can be distinguished on specific detection sectors and at different detection distances after the sample, depending on their size and orientation.
Collapse
Affiliation(s)
- Maria-Maddalena Schiavone
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85747 Garching, Germany.
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| | - Shin-Ichi Takata
- Materials and Life Science Division, Japan Proton Accelerator Research Complex (JPARC), Tokai, Ibaraki 319-1195, Japan.
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85747 Garching, Germany.
| |
Collapse
|
6
|
Multidirectional proton-conducting membrane based on sulfonated big π-conjugated monomer into block copoly(ether sulfone)s. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Lee KH, Chu JY, Kim AR, Yoo DJ. Facile Fabrication and Characterization of Improved Proton Conducting Sulfonated Poly(Arylene Biphenylether Sulfone) Blocks Containing Fluorinated Hydrophobic Units for Proton Exchange Membrane Fuel Cell Applications. Polymers (Basel) 2018; 10:E1367. [PMID: 30961293 PMCID: PMC6401750 DOI: 10.3390/polym10121367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 11/16/2022] Open
Abstract
Sulfonated poly(arylene biphenylether sulfone)-poly(arylene ether) (SPABES-PAE) block copolymers by controlling the molar ratio of SPABES and PAE oligomers were successfully synthesized, and the performances of SPABES-PAE (1:2, 1:1, and 2:1) membranes were compared with Nafion 212. The prepared membranes including fluorinated hydrophobic units were stable against heat, nucleophile attack, and physio-chemical durability during the tests. Moreover, the polymers exhibited better solubility in a variety of solvents. The chemical structure of SPABES-PAEs was investigated by ¹H nuclear magnetic resonance (¹H NMR), Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC). The membrane of SPABES-PAEs was fabricated by the solution casting method, and the membranes were very flexible and transparent with a thickness of 70⁻90 μm. The morphology of the membranes was observed using atomic force microscope and the ionic domain size was proved by small angle X-ray scattering (SAXS) measurement. The incorporation of polymers including fluorinated units allowed the membranes to provide unprecedented oxidative and dimensional stabilities, as verified from the results of ex situ durability tests and water uptake capacity, respectively. By the collective efforts, we observed an enhanced water retention capacity, reasonable dimensional stability and high proton conductivity, and the peak power density of the SPABES-PAE (2:1) was 333.29 mW·cm-2 at 60 °C under 100% relative humidity (RH).
Collapse
Affiliation(s)
- Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center and Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
- Department of Life Science, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
8
|
The structure–property–performance relationship of disulfonated naphthyl pendants bearing poly(aryl ether)s for polymer electrolyte membrane applications. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu D, Chen J, Song L, Lu A, Wang Y, Sun G. Parameterization of silica-filled silicone rubber morphology: A contrast variation SANS and TEM study. POLYMER 2017; 120:155-163. [DOI: 10.1016/j.polymer.2017.05.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water. Data Brief 2016; 7:599-603. [PMID: 27054164 PMCID: PMC4802542 DOI: 10.1016/j.dib.2016.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/30/2022] Open
Abstract
In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus–Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. “Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells” [1].
Collapse
|
11
|
Kulvelis Y, Ivanchev SS, Primachenko ON, Lebedev VT, Marinenko EA, Ivanova IN, Kuklin AI, Ivankov OI, Soloviov DV. Structure and property optimization of perfluorinated short side chain membranes for hydrogen fuel cells using orientational stretching. RSC Adv 2016. [DOI: 10.1039/c6ra23445c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stretching of membranes with low molecular weight makes structure rearrangement according to neutron scattering data on D2O-filled membranes.
Collapse
Affiliation(s)
- Yu. V. Kulvelis
- Neutron Researches Department
- B.P. Konstantinov Petersburg Nuclear Physics Institute
- National Research Centre “Kurchatov Institute”
- Gatchina
- Russia
| | - S. S. Ivanchev
- St. Petersburg Department of Boreskov Institute of Catalysis
- Siberian Branch of Russian Academy of Sciences
- St. Petersburg
- Russia
| | - O. N. Primachenko
- St. Petersburg Department of Boreskov Institute of Catalysis
- Siberian Branch of Russian Academy of Sciences
- St. Petersburg
- Russia
| | - V. T. Lebedev
- Neutron Researches Department
- B.P. Konstantinov Petersburg Nuclear Physics Institute
- National Research Centre “Kurchatov Institute”
- Gatchina
- Russia
| | - E. A. Marinenko
- St. Petersburg Department of Boreskov Institute of Catalysis
- Siberian Branch of Russian Academy of Sciences
- St. Petersburg
- Russia
| | - I. N. Ivanova
- Neutron Researches Department
- B.P. Konstantinov Petersburg Nuclear Physics Institute
- National Research Centre “Kurchatov Institute”
- Gatchina
- Russia
| | - A. I. Kuklin
- Joint Institute for Nuclear Research
- Dubna
- Russia
- Moscow Institute of Physics and Technology
- Dolgoprudny
| | - O. I. Ivankov
- Joint Institute for Nuclear Research
- Dubna
- Russia
- Moscow Institute of Physics and Technology
- Dolgoprudny
| | - D. V. Soloviov
- Joint Institute for Nuclear Research
- Dubna
- Russia
- Moscow Institute of Physics and Technology
- Dolgoprudny
| |
Collapse
|