1
|
Lv X, Chen L, Guo R, Yang Y, Liu X, Yu S. Gadolinium Functionalized Carbon Dot Complexes for Dual-Modal Imaging: Structure, Performance, and Applications. ACS Biomater Sci Eng 2025; 11:2037-2051. [PMID: 40077925 DOI: 10.1021/acsbiomaterials.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Gadolinium functionalized carbon dot complexes (Gd-CDs) have both the fluorescent properties of carbon dots and the magnetic characteristics of gadolinium ions, exhibiting excellent biocompatibility, high spatial resolution, high sensitivity, and deep tissue penetration in bioimaging. As fluorescence (FL) and magnetic resonance imaging (MRI) probes, Gd-CDs have attracted significant attention in dual-modal biological imaging. This review summarizes recent advances in Gd-CDs, focusing on their structure, optical and magnetic properties, and applications in dual-modal imaging. First, according to the different existing forms of gadolinium in carbon dots, the structures of Gd-CDs are categorized into chelation, electrostatic interaction, and encapsulation. Second, the mechanisms and performances of Gd-CDs in dual-modal imaging are introduced in detail. The reported Gd-CDs have a maximum quantum yield of 69.86%, with a fluorescence emission wavelength reaching up to 625 nm, and the optimum longitudinal and transverse relaxivity rates are 35.39 and 115.6 mM-1 s-1, respectively, showing excellent FL/MRI capacities. Subsequently, the progress in their applications in dual-modal cellular imaging, in vivo imaging, and integrated cancer diagnosis and therapy is reviewed. Finally, the challenges and issues faced by Gd-CDs in their development are summarized, providing new insights for their controlled synthesis and widespread application in the biomedical field of dual-modal imaging.
Collapse
Affiliation(s)
- Xin Lv
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Rongrong Guo
- Shanxi Province Cancer Hospital, Shanxi Hospital of Chinese Academy of Medical Sciences Cancer Hospital, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital, Shanxi Hospital of Chinese Academy of Medical Sciences Cancer Hospital, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| |
Collapse
|
2
|
Wei B, Huang S, Li K, Wu H, Liu Y, Zhang J, Hou Y, Zhu L, Xu C, Wang L, Wang H. Recognition of MCF-7 breast cancer cells using native collagen probes: Collagen source effect. Int J Biol Macromol 2024; 282:136661. [PMID: 39423971 DOI: 10.1016/j.ijbiomac.2024.136661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Developing superior cancer cell recognition probes is crucial for the development of tumor therapy and cancer early screening materials. In this study, we first achieved effective recognition of MCF-7 breast cancer cells using natural collagen probes. Through cell adhesion, cancer cell selective capture, and flow cytometry techniques, the binding efficiency of mammalian-derived collagens (bovine Achilles tendon collagen, porcine skin collagen) and fish-derived collagens (turbot skin collagen, grass carp skin collagen, mandarin fish skin collagen) to cancer cells (MCF-7 breast cancer cells) and normal cells (human umbilical vein endothelial cells, HUVECs) was analyzed and compared. The feasibility of different source collagens as probes for recognition of MCF-7 cells was explored in vitro. The results indicated that mammalian-derived collagens had a superior advantage over fish-derived collagens in recognizing MCF-7 cells, with bovine Achilles tendon collagen achieving a capture rate of up to 64.7 % in a multicellular co-culture system. Furthermore, in vivo imaging of BALB/c tumor-bearing mice confirmed the high-efficiency targeted recognition performance of the bovine Achilles tendon collagen probe for MCF-7 cells.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Siying Huang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ke Li
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, PR China
| | - Hui Wu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yong Liu
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Linjie Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, PR China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, PR China.
| |
Collapse
|
3
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. New insight into the application of fluorescence platforms in tumor diagnosis: From chemical basis to clinical application. Med Res Rev 2022; 43:570-613. [PMID: 36420715 DOI: 10.1002/med.21932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Early and rapid diagnosis of tumors is essential for clinical treatment or management. In contrast to conventional means, bioimaging has the potential to accurately locate and diagnose tumors at an early stage. Fluorescent probe has been developed as an ideal tool to visualize tumor sites and to detect biological molecules which provides a requirement for noninvasive, real-time, precise, and specific visualization of structures and complex biochemical processes in vivo. Rencently, the development of synthetic organic chemistry and new materials have facilitated the development of near-infrared small molecular sensing platforms and nanoimaging platforms. This provides a competitive tool for various fields of bioimaging such as biological structure and function imaging, disease diagnosis, in situ at the in vivo level, and real-time dynamic imaging. This review systematically focused on the recent progress of small molecular near-infrared fluorescent probes and nano-fluorescent probes as new biomedical imaging tools in the past 3-5 years, and it covers the application of tumor biomarker sensing, tumor microenvironment imaging, and tumor vascular imaging, intraoperative guidance and as an integrated platform for diagnosis, aiming to provide guidance for researchers to design and develop future biomedical diagnostic tools.
Collapse
Affiliation(s)
- Yanchen Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Qinhua Chen
- Department of Pharmacy Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen China
| | - Xiaoyan Pan
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Wen Lu
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| |
Collapse
|
4
|
Zhou M, Li L, Xie W, He Z, Li J. Synthesis of a Thermal-Responsive Dual-Modal Supramolecular Probe for Magnetic Resonance Imaging and Fluorescence Imaging. Macromol Rapid Commun 2021; 42:e2100248. [PMID: 34272782 DOI: 10.1002/marc.202100248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Indexed: 11/05/2022]
Abstract
Dual-modal imaging can integrate the advantages of different imaging technologies, which could improve the accuracy and efficiency of clinical diagnosis. Herein, a novel amphiphilic thermal-responsive copolymer obtained from three types of monomers, N-isopropyl acrylamide, 2-(acetoacetoxy) ethyl methacrylate, and propargyl methacrylate, by RAFT copolymerization, is reported. It can be grafted with β-cyclodextrin and aggregation-induced emission (AIE) luminogens tetraphenylethylene by click chemistry and Biginelli reaction. The multifunctional supramolecular polymer (P4) can be constructed by host-guest inclusion between the copolymer and the Gd-based contrast agent (CA) modified by adamantane [Ad-(DOTA-Gd)]. And it can form vesicles with a bilayer structure in aqueous which will enhance the AIE and magnetic resonance imaging effects. As fluorescent thermometer, P4 can enter HeLa cells for intracellular fluorescence imaging (FI) and is sensitive to temperature with detection limit value of 1.5 °C. As magnetic resonance CA, P4 exhibits higher relaxation compared to Magnevist, which can prolong the circulation time in vivo. In addition, Gd3+ in the polymer can be quickly released from the body by disassembly that reduced the biological toxicity. This work introduces new synthetic ideas for dual-modal probe, which has great potential for clinical diagnostic applications in bioimaging.
Collapse
Affiliation(s)
- Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Li Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
5
|
He C, Wu X, Zhou J, Chen Y, Ye J. Raman optical identification of renal cell carcinoma via machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119520. [PMID: 33582436 DOI: 10.1016/j.saa.2021.119520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 05/06/2023]
Abstract
High pathologic tumor-node-metastasis (pTNM) stage grade or Fuhrman grade indicates poor oncological outcome in renal cell carcinoma (RCC). Early diagnosis and screening of these RCCs and adjust surgical planning accordingly are greatly beneficial to patients. Raman spectroscopy is a highly specific fingerprint spectrum on molecular level, pretty appropriate for label-free and noninvasive cancer diagnosis. In this work we established a Raman spectrum-based supporting vector machine (SVM) model to accurately ex vivo distinguish human renal tumor from normal tissues and fat with an accuracy of 92.89%. The model can also be used to determine tumor boundary, showing consistent results to pathological staining analysis. This method can be additionally used to accomplish the classification purposes of renal tumor subtypes and grades with an accuracy of 86.79% and 89.53%, respectively. Therefore, we prove that Raman spectroscopy has great potential in the rapid and accurate clinical diagnosis of renal cancers.
Collapse
Affiliation(s)
- Chang He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiaorong Wu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jiale Zhou
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Yonghui Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
6
|
Bevacizumab and folic acid dual-targeted gadolinium-carbon dots for fluorescence/magnetic resonance imaging of hepatocellular carcinoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Wang S, Gu K, Yan C, Guo Z, Zhao P, Zhu WH. POSS: A Morphology-Tuning Strategy To Improve the Sensitivity and Responsiveness of Dissolved Oxygen Sensor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shuwen Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaizhi Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chenxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Surface charge of well-defined polymeric nano-stars regulates non-invasive fluorescence imaging of lymph node. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:740-751. [PMID: 30889749 DOI: 10.1016/j.msec.2019.01.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/20/2022]
Abstract
Accurate identification of sentinel lymph node (SLN) is crucial for clinical SLN biopsy surgery. Herein, we developed an innovative nanoprobe based on well-defined core crosslinked star (CCS) polymers for non-invasive fluorescence imaging of SLN. A well-defined biodegradable CCS polymer comprising multiple polyethylene glycol (PEG) arms and carboxyl terminal groups (denoted as CCS-COOH) was synthesized successfully by reversible addition-fragmentation chain transfer polymerization with a disulfide-based crosslinker reagent. Besides, CCS-COOH was coupled by tert-butyl carbazate to produce the CCS derivative with neutral butoxycarbonyl (Boc) terminal groups (denoted as CCS-Boc). By the removal of Boc groups, another CCS derivative with positive primary amino terminal groups (denoted as CCS-NH2) was also yielded. These CCS polymers had similar particle size but different surface charge. For SLN fluorescence imaging, the CCS polymers labeled by CY7, a near-infrared probe, exhibited superior in vitro photo-stability to CY7 alone. After intradermal injection of the CY7-labeled CCS polymers in a mouse model, they could efficiently accumulate in the lymph node of the mouse. CY7-labeled CCS-COOH having negatively-charged surface displayed longer duration time and higher fluorescence intensity in the lymph node as compared to its counterparts with neutral or positive charge surface. In vitro and in vivo toxicity tests supported low cytotoxicity of these CCS polymers against cell lines and low systemic toxicity. The results of this work highlight the potential of negatively-charged near-infrared-emitting CCS polymer as a new nanoprobe for safe and efficient SLN imaging.
Collapse
|
9
|
Rojas-Montoya SM, Vonlanthen M, Ruiu A, Rodríguez-Alba E, Burillo G, Rivera E. Photoluminescent Grafted Polymers: Synthesis and Properties of a Polyethylene Matrix Covalently Linked with Porphyrin Units. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sandra M. Rojas-Montoya
- Instituto de Investigaciones en Materiales; Universidad Nacional Autónoma de México; Circuito Exterior Ciudad Universitaria; C.P. 04510 Ciudad de México México
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales; Universidad Nacional Autónoma de México; Circuito Exterior Ciudad Universitaria; C.P. 04510 Ciudad de México México
| | - Andrea Ruiu
- Instituto de Investigaciones en Materiales; Universidad Nacional Autónoma de México; Circuito Exterior Ciudad Universitaria; C.P. 04510 Ciudad de México México
| | - Efraín Rodríguez-Alba
- Instituto de Investigaciones en Materiales; Universidad Nacional Autónoma de México; Circuito Exterior Ciudad Universitaria; C.P. 04510 Ciudad de México México
| | - Guillermina Burillo
- Instituto de Ciencias Nucleares; Universidad Nacional Autónoma de México; Circuito Exterior Ciudad Universitaria; C.P. 04510 Ciudad de México México
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales; Universidad Nacional Autónoma de México; Circuito Exterior Ciudad Universitaria; C.P. 04510 Ciudad de México México
| |
Collapse
|
10
|
Tirumalachetty V, Palaninathan K. Blue and green light emitting polyarylpyrazolines luminogens containing anthracene and thiophene units. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018; 8:320-338. [PMID: 29881672 PMCID: PMC5989919 DOI: 10.1016/j.apsb.2018.03.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Junwei Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Shengnan Ma
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Lixian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Xiani Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
12
|
Qian W, Zhu Q, Duan B, Tang W, Yuan Y, Hu A. Electrostatic self-assembled nanoparticles based on spherical polyelectrolyte brushes for magnetic resonance imaging. Dalton Trans 2018; 47:7663-7668. [DOI: 10.1039/c8dt01069b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrostatic self-assemblies based on SPBs and Gd-DTPA-NO-C4 exhibit perfect relaxometric performance.
Collapse
Affiliation(s)
- Weiqiao Qian
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Qin Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Bing Duan
- The State Key Laboratory of Bioreactor Engineering East China University of Science and Technology
- Shanghai
- China
| | - Weijun Tang
- Department of Radiology
- Huashan Hospital Affiliated to Fudan University
- Shanghai
- China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering East China University of Science and Technology
- Shanghai
- China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
13
|
Xia M, Ye M, Zhou X, Tang J, Piao Y, Liu X, Zhou Z, Hu H, Shen Y. A facile synthesis of a theranostic nanoparticle by oxidation of dopamine-DTPA-Gd conjugates. J Mater Chem B 2017; 5:8754-8760. [PMID: 32264269 DOI: 10.1039/c7tb01362k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photothermal therapies (PPTs) with various light-absorbing materials have shown very promising therapeutic effects against cancers. However, their application was severely limited by the lack of accurate localization of tumors and real-time monitoring of the therapeutic process. Theranostic nanoparticles with both imaging and therapeutic functions are highly desired to develop imaging-mediated PPTs. Herein, we develop a facile one-pot method to synthesize a nanoparticle with functions of an MRI contrast agent and a PTT agent through oxidization of dopamine-DTPA-Gd conjugates and PEG-dopamine conjugates. The oxidized dopamine nanoparticles (ODNP) had a high R1 up to 9.6 mM-1 s-1, 2.2 times higher than that of Omniscan, and showed significantly higher MRI contrast enhancement than Omniscan in tumor. Meanwhile, the ODNP showed strong NIR light absorption and significant antitumor efficacy both in vitro and in vivo as a PPT agent. The ODNP with excellent MRI contrasting capability and PTT efficacy plus its facile synthesis and good biocompatibility are a very promising theranostic agent for MRI-mediated PTT.
Collapse
Affiliation(s)
- Mingchun Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhou X, Ye M, Han Y, Tang J, Qian Y, Hu H, Shen Y. Enhancing MRI of liver metastases with a zwitterionized biodegradable dendritic contrast agent. Biomater Sci 2017; 5:1588-1595. [DOI: 10.1039/c7bm00126f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The MRI enhanced by a zwitterionized dendritic contrast agent clearly indicates metastatic tumors in the liver.
Collapse
Affiliation(s)
- Xiaoxuan Zhou
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Mingzhou Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Yuxin Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Yue Qian
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Hongjie Hu
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| |
Collapse
|
15
|
Sun Y, Wang Y, Li J, Ding C, Lin Y, Sun W, Luo C. An ultrasensitive chemiluminescence aptasensor for indirect hemin detection based on aptamer recognition materials. NEW J CHEM 2017. [DOI: 10.1039/c7nj01159h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MGO@H-Atp@Co-PP polymers were successfully prepared and used to construct a MGO@H-Atp@Co-PP-CL aptasensor.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chaofan Ding
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanna Lin
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Weiyan Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|