1
|
Zhang X, Zhang H, Liu X, Wang J, Li S, Gao P. Review and Future Perspectives of Stimuli-Responsive Bridged Polysilsesquioxanes in Controlled Release Applications. Polymers (Basel) 2024; 16:3163. [PMID: 39599255 PMCID: PMC11598018 DOI: 10.3390/polym16223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Bridged polysilsesquioxanes (BPSs) are emerging biomaterials composed of synergistic inorganic and organic components. These materials have been investigated as ideal carriers for therapeutic and diagnostic systems for their favorable properties, including excellent biocompatibility, physiological inertia, tunable size and morphology, and their extensive design flexibility of functional organic groups to satisfy diverse application requirements. Stimuli-responsive BPSs can be activated by both endogenous and exogenous stimuli, offering a precise, safe, and effective platform for the controlled release of various targeted therapeutics. This review aims to provide a comprehensive overview of stimuli-responsive BPSs, focusing on their synthetic strategies, biocompatibility, and biodegradability, while critically assessing their capabilities for controlled release in response to specific stimuli. Furthermore, practical suggestions and future perspectives for the design and development of BPSs are presented. This review highlights the significant role of stimuli-responsive BPSs in advancing biomedical research.
Collapse
Affiliation(s)
- Xin Zhang
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Han Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Xiaonan Liu
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jiao Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Shifeng Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Peng Gao
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
2
|
Bozbay R, Orakdogen N. Temperature-regulated elasticity and multifunctionality in n-alkyl methacrylate ester-based ternary gels: optimizing adsorption and pH/temperature dual sensitivity. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Transparency- and Repellency-Enhanced Acrylic-Based Binder for Stimuli-Responsive Road Paint Safety Improvement Technology. MATERIALS 2021; 14:ma14226829. [PMID: 34832229 PMCID: PMC8622446 DOI: 10.3390/ma14226829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
In the current study, an acrylic polymer binder applicable to road signs was successfully developed by mixing various acrylic, acrylate-type, and photoinitiator-based monomer species at different acrylate series/silicone acrylate ratios. An amorphous acrylic monomer was used, and the distance between the polymers was increased to improve transparency. The binder was designed with the purpose of reducing the yellowing phenomenon due to resonance by excluding the aromatic ring structure, which is the main cause of yellowing. The optical properties of the binder were determined according to the content of n-butyl methacrylate/methyl methacrylate and the composition of the crosslinking agent in the formulation. Allyl glycidyl ether and dilauroyl peroxide were used to improve the yellowing problem of benzoyl peroxide, an aromatic photoinitiator. Adding a silicone-based trivalent acrylic monomer, 3-(trimethoxysilyl)propyl methacrylate (TMSPMA), was also found to have a significant effect on the transparency, shear properties, and water resistance of the binder. When 15 wt% TMSPMA was added, the best water repellency and mechanical properties were exhibited. The surface morphology of the improved binder and the peeling part were confirmed using field emission scanning electron microscopy. The acrylic polymer developed in this study can be applied in the coating and adhesive industries.
Collapse
|
4
|
Rogers HE, Chambon P, Flynn S, Hern FY, Owen A, Rannard SP. Designing single trigger/dual-response release and degradation into amine-functional hyperbranched-polydendron nanoprecipitates. NANOSCALE ADVANCES 2020; 2:5468-5477. [PMID: 36132019 PMCID: PMC9418457 DOI: 10.1039/d0na00696c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/20/2020] [Indexed: 06/15/2023]
Abstract
The synthesis of complex polymer architectures using relatively facile experimental protocols provides access to materials with the opportunity to control functionality and physical behaviour. The scope of hyperbranched-polydendron chemistries has been expanded here to include primary chains comprising amine-functional 'homopolymer', 'statistical copolymer' and amphiphilic 'block copolymer' analogues using 2-(diethyl amino)ethyl methacrylate, 2-hydroxy propyl methacrylate and t-butyl methacrylate. The different primary chain chemistry and architectures leads to a marked variation in nanoprecipitation behaviour and the response of the resulting amine-functional nanoparticles to varying pH. When acid-sensitive and acid-stable branchers, 1,4-butanediol di(methacryoyloxy)-ethyl ether and ethylene glycol dimethacrylate respectively, are utilised, nanoparticles with encapsulation properties are formed and may be triggered to either release-and-disassemble or release-disassemble-degrade to form a solution of lower molecular weight constituent primary chains.
Collapse
Affiliation(s)
- Hannah E Rogers
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Sean Flynn
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Faye Y Hern
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Andrew Owen
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| |
Collapse
|
5
|
Oh J, Kim SJ, Oh MK, Khan A. Antibacterial properties of main-chain cationic polymers prepared through amine-epoxy 'Click' polymerization. RSC Adv 2020; 10:26752-26755. [PMID: 35515796 PMCID: PMC9055516 DOI: 10.1039/d0ra04625f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022] Open
Abstract
Poly(β-hydroxyl amine)s are prepared through an amine-epoxy 'click' polymerization process in water under ambient conditions. These materials could be subjected to a post-polymerization protonation/alkylation reaction at the nitrogen atom to yield quaternary ammonium salts in the polymer backbone. The antimicrobial activities indicated that polymers carrying butyl chains at the nitrogen atom are effective towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as only 10-20 μg mL-1 polymer concentrations are required to inhibit the bacterial growth by >90%. One of the candidates was also found to be effective towards Mycobacterium smegmatis (M. smegmatis) - a model organism to develop drugs against rapidly spreading tuberculosis (TB) infections. The hemolysis assay indicated that a majority of antimicrobial agents did not disrupt red blood cell membranes. The mechanistic studies suggested that cell wall disruption by the cationic polymers was the likely cause of bacterial death.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| | - Seung-Jin Kim
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| |
Collapse
|
6
|
Oh J, Hong J, Khan A. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1761259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Jeonghui Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
7
|
Hong J, Oh J, Khan A. Deconstructing poloxamer and poloxamine block copolymers to access poly(ethylene glycol) and poly(propylene oxide)-based thermoresponsive polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1724055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jeonghui Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
8
|
Abstract
Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.
Collapse
Affiliation(s)
- Patrick Verkoyen
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Holger Frey
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
9
|
Thermoresponsive Poly(ß-hydroxyl amine)s: Synthesis of a New Stimuli Responsive Amphiphilic Homopolymer Family through Amine-Epoxy 'Click' Polymerization. Polymers (Basel) 2019; 11:polym11121941. [PMID: 31775388 PMCID: PMC6961043 DOI: 10.3390/polym11121941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022] Open
Abstract
A new synthesis of amphiphilic homopolymers is described. In this synthesis, commercially available and inexpensive primary amines and di-epoxide molecules are utilized as AA- and BB-types of monomers in an amine-epoxy ‘click’ polymerization process. This process can be carried out in water and at room temperature. It does not require a catalyst or inert conditions and forms no byproducts. Therefore, the polymer synthesis can be carried out in open-air and bench-top conditions and a post-synthesis purification step is not required. The modularity of the synthesis, on the other hand, allows for facile structural modulation and tuning of the thermally triggered aggregation process in the temperature range of 7 to 91 °C. Finally, the underlying principles can be translated from linear architectures to polymer networks (hydrogels).
Collapse
|
10
|
Oh J, Jung KI, Jung HW, Khan A. A Modular and Practical Synthesis of Zwitterionic Hydrogels through Sequential Amine-Epoxy "Click" Chemistry and N-Alkylation Reaction. Polymers (Basel) 2019; 11:E1491. [PMID: 31547408 PMCID: PMC6780745 DOI: 10.3390/polym11091491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
In this work, the amine-epoxy "click" reaction is shown to be a valuable general tool in the synthesis of reactive hydrogels. The practicality of this reaction arises due to its catalyst-free nature, its operation in water, and commercial availability of a large variety of amine and epoxide molecules that can serve as hydrophilic network precursors. Therefore, hydrogels can be prepared in a modular fashion through a simple mixing of the precursors in water and used as produced (without requiring any post-synthesis purification step). The gelation behavior and final hydrogel properties depend upon the molecular weight of the precursors and can be changed as per the requirement. A post-synthesis modification through alkylation at the nitrogen atom of the newly formed β-hydroxyl amine linkages allows for functionalizing the hydrogels. For example, ring-opening reaction of cyclic sulfonic ester gives rise to surfaces with a zwitterionic character. Finally, the established gelation chemistry can be combined with soft lithography techniques such as micromolding in capillaries (MIMIC) to obtain hydrogel microstructures.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Kevin Injoe Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
11
|
Pethe AM, Yadav KS. Polymers, responsiveness and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:395-405. [PMID: 30688110 DOI: 10.1080/21691401.2018.1559176] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A single outcome in a biological procedure at the time of cancer therapy is due to multiple changes happening simultaneously. Hence to mimic such complex biological processes, an understanding of stimuli responsiveness is needed to sense specific changes and respond in a predictable manner. Such responses due to polymers may take place either simultaneously at the site or in a sequential manner from preparation to transporting pathways to cellular compartments. The present review comprehends the stimuli-responsive polymers and multi-responsiveness with respect to cancer therapy. It focuses on the exploitation of different stimuli like temperature, pH and enzymes responsiveness in a multi-stimuli setting. Nanogels and micelles being two of the most commonly used responsive polymeric carriers have also been discussed. The role of multiple stimuli delivery system is significant due to multiple changes happening in the near surroundings of cancer cells. These responsive materials are able to mimic some biological processes and recognize at the molecular level itself to manipulate development of custom-designed molecules for targeting cancer cells.
Collapse
Affiliation(s)
- Anil M Pethe
- a Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University) , Mumbai , Maharashtra , India
| | - Khushwant S Yadav
- a Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University) , Mumbai , Maharashtra , India
| |
Collapse
|
12
|
Synthesis and characterization of triple-responsive PNiPAAm-S-S-P(αN3CL-g-alkyne) copolymers bearing cholesterol and fluorescence monitor. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Dong Y, Ma X, Huo H, Zhang Q, Qu F, Chen F. Preparation of quadruple responsive polymeric micelles combining temperature-, pH-, redox-, and UV-responsive behaviors and its application in controlled release system. J Appl Polym Sci 2018. [DOI: 10.1002/app.46675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yeqing Dong
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Xiaoyan Ma
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Qilu Zhang
- State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Fengjin Qu
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Fang Chen
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| |
Collapse
|
14
|
Lin YK, Yu YC, Wang SW, Lee RS. Temperature, ultrasound and redox triple-responsive poly(N-isopropylacrylamide) block copolymer: synthesis, characterization and controlled release. RSC Adv 2017. [DOI: 10.1039/c7ra06825e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Triple stimuli-responsive polymers PNiPAAm-S-S-PXCL containing a disulfide (–S–S–) bond as a junction point between hydrophilic and hydrophobic chains were synthesized and characterized.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine
- Chang Gung Memorial Hospital at Keelung
- Keelung
- Taiwan
| | - Yung-Ching Yu
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| | - Ren-Shen Lee
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| |
Collapse
|
15
|
Billing M, Elter JK, Schacher FH. Sulfo-and carboxybetaine-containing polyampholytes based on poly(2-vinyl pyridine)s: Synthesis and solution behavior. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Song S, Lee J, Kweon S, Song J, Kim K, Kim BS. Hyperbranched Copolymers Based on Glycidol and Amino Glycidyl Ether: Highly Biocompatible Polyamines Sheathed in Polyglycerols. Biomacromolecules 2016; 17:3632-3639. [DOI: 10.1021/acs.biomac.6b01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Suhee Song
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Joonhee Lee
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Songa Kweon
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jaeeun Song
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kyuseok Kim
- Department
of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Korea
| | - Byeong-Su Kim
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|