1
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
2
|
Xu J, Zhu X, Zhao J, Ling G, Zhang P. Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Adv Colloid Interface Sci 2023; 321:103000. [PMID: 37839280 DOI: 10.1016/j.cis.2023.103000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Supramolecular hydrogels bound by hydrogen bonding, host-guest, hydrophobic, and other non-covalent interactions are among the most attractive biomaterials available. Supramolecular hydrogels have attracted extensive attention due to their inherent dynamic reversibility, self-healing, stimuli-response, excellent biocompatibility, and near-physiological environment. However, the inherent contradiction between non-covalent interactions and mechanical strength makes the practical application of supramolecular hydrogels a great challenge. This review describes the mechanical strength of hydrogels mediated by supramolecular interactions, and focuses on the potential strategies for enhancing the mechanical strength of supramolecular hydrogels and illustrates their applications in related fields, such as flexible electronic sensors, wound dressings, and three-dimensional (3D) scaffolds. Finally, the current problems and future research prospects of supramolecular hydrogels are discussed. This review is expected to provide insights that will motivate more advanced research on supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| |
Collapse
|
3
|
Ji Z, Zhao J, Feng S, Zhu F, Yu W, Ye Y, Zheng Q. Insight into the Charge-Ratio-Tuned Solar Vapor Generation of Polyion Complex Hydrogel/Coal Powder Composites. Polymers (Basel) 2023; 15:polym15112449. [PMID: 37299246 DOI: 10.3390/polym15112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Solar-driven water purification has been deemed a promising technology to address the issue of clean water scarcity. However, traditional solar distillers often suffer from low evaporation rates under natural sunlight irradiation, while the high costs of the fabrication of photothermal materials further hinders their practical applications. Here, through the harnessing of the complexation process of oppositely charged polyelectrolyte solutions, a polyion complex hydrogel/coal powder composite (HCC)-based highly efficient solar distiller is reported. In particular, the influence of the charge ratio of polyanion-to-polycation on the solar vapor generation performance of HCC has been systematically investigated. Together with a scanning electron microscope (SEM) and the Raman spectrum method, it is found that a deviation from the charge balance point not only alters the microporous structure of HCC and weakens its water transporting capabilities, but also leads to a decreased content of activated water molecules and enlarges the energy barrier of water evaporation. As a result, HCC prepared at the charge balance point exhibits the highest evaporation rate of 3.12 kg m-2 h-1 under one sun irradiation, with a solar-vapor conversion efficiency as high as 88.83%. HCC also exhibits remarkable solar vapor generation (SVG) performance for the purification of various water bodies. In simulated seawater (3.5 wt% NaCl solutions), the evaporation rate can be as high as 3.22 kg m-2 h-1. In acid and alkaline solutions, HCCs are capable of maintaining high evaporation rates of 2.98 and 2.85 kg m-2 h-1, respectively. It is anticipated that this study may provide insights for the design of low-cost next-generation solar evaporators, and broaden the practical applications of SVG for seawater desalination and industrial wastewater purification.
Collapse
Affiliation(s)
- Zhiteng Ji
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianhang Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shanhao Feng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fengbo Zhu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Wenwen Yu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanan Ye
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Qiang Zheng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Koryam AA, El-Wakeel ST, Radwan EK, Fattah AMA, Darwish ES. Preparation and characterization of chemically cross-linked zwitterionic copolymer hydrogel for direct dye and toxic trace metal removal from aqueous medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26966-7. [PMID: 37184796 DOI: 10.1007/s11356-023-26966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this work, a zwitterionic copolymer hydrogel with adsorption affinity toward anionic dye and cationic trace metal was prepared by a free radical copolymerization of cationic ([3-(methacryloylamino)propyl] trimethylammonium chloride (MPTC)) and anionic (sodium 4-vinylbenzenesulfonate (SVBS)) monomers. Bis[2-(methacryloyloxy)ethyl] phosphate was used as a cross-linker and its effect on the adsorption properties of the prepared hydrogel was evaluated. The prepared materials were characterized by FTIR, XRD, SEM, EDX, and N2 adsorption at 77 K analysis. FTIR and EDX analysis demonstrated the successful preparation of poly(MPTC-co-VBS). XRD and SEM analysis showed that the poly (MPTC-co-VBS) is amorphous and has quasi-honeycomb morphology with large pores. Increasing the amount of the cross-linker enhanced the adsorption of direct blue 71 dye (DB71) and Pb(II) ions. The highest removal of DB71 and Pb(II) was achieved after 2 h using 1.5 g/L of poly(MPTC-co-VBS); however, the optimum solution pH was 3 for DB71 and 5 for Pb(II). The kinetics and isotherm studies illustrated that the surface of poly(MPTC-co-VBS) is heterogenous with small-sized homogenous pitches and the DB71 and Pb(II) adsorption onto poly(MPTC-co-VBS) is favorable. Finally, poly(MPTC-co-VBS) is more efficient in removing DB71 and Pb(II) from aqueous solutions than many other reported adsorbents.
Collapse
Affiliation(s)
- Asmaa A Koryam
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, DokkiGiza, 12622, Egypt
| | - Shaimaa T El-Wakeel
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, DokkiGiza, 12622, Egypt.
| | - Emad K Radwan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, DokkiGiza, 12622, Egypt
| | - Azza M Abdel Fattah
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, 12613, Egypt
| | - Elham S Darwish
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, 12613, Egypt
| |
Collapse
|
5
|
Establishment of a new horizontal casting device and evaluation system for characterizing the homogeneity of food soft matter solution. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Newham G, Evans SD, Ong ZY. Mechanically tuneable physical nanocomposite hydrogels from polyelectrolyte complex templated silica nanoparticles for anionic therapeutic delivery. J Colloid Interface Sci 2022; 617:224-235. [PMID: 35276523 DOI: 10.1016/j.jcis.2022.02.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022]
Abstract
Hydrogels have shown great promise for drug delivery and tissue engineering but can be limited in practical applications by poor mechanical performance. The incorporation of polymer grafted silica nanoparticles as chemical or physical crosslinkers in in situ polymerised nanocomposite hydrogels has been widely researched to enhance their mechanical properties. Despite the enhanced mechanical stiffness, tensile strength, and self-healing properties, there remains a need for the development of simpler and modular approaches to obtain nanocomposite hydrogels. Herein, we report a facile protocol for the polyelectrolyte complex (PEC) templated synthesis of organic-inorganic hybrid poly(ethylenimine) functionalised silica nanoparticles (PEI-SiNPs) and their use as multifunctional electrostatic crosslinkers with hyaluronic acid (HA) to form nanocomposite hydrogels. Upon mixing, electrostatic interactions between cationic PEI-SiNPs and anionic HA resulted in the formation of a coacervate nanocomposite hydrogel with enhanced mechanical stiffness that can be tuned by varying the ratios of PEI-SiNPs and HA present. The reversible electrostatic interactions within the hydrogel networks also enabled self-healing and thixotropic properties. The excess positive charge present within the PEI-SiNPs facilitated high loading and retarded the release of the anionic anti-cancer drug methotrexate from the nanocomposite hydrogel. Furthermore, the electrostatic complexation of PEI-SiNP and HA was found to mitigate haemotoxicity concerns associated with the use of high molecular weight PEI. The method presented herein offers a simpler and more versatile strategy for the fabrication of coacervate nanocomposite hydrogels with tuneable mechanical stiffness and self-healing properties for drug delivery applications.
Collapse
Affiliation(s)
- George Newham
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Zhan Yuin Ong
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Roels E, Terryn S, Iida F, Bosman AW, Norvez S, Clemens F, Van Assche G, Vanderborght B, Brancart J. Processing of Self-Healing Polymers for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104798. [PMID: 34610181 DOI: 10.1002/adma.202104798] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.
Collapse
Affiliation(s)
- Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Fumiya Iida
- Machine Intelligence Lab, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Anton W Bosman
- SupraPolix B. V., Horsten 1.29, Eindhoven, 5612 AX, The Netherlands
| | - Sophie Norvez
- Chimie Moléculaire, Macromoléculaire, Matériaux, École Supérieure de Physique et de Chimie (ESPCI), 10 Rue Vauquelin, Paris, 75005, France
| | - Frank Clemens
- Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
8
|
Hu Q, Zhang Y, Wang T, Sun W, Tong Z. pH Responsive Strong Polyion Complex Shape Memory Hydrogel with Spontaneous Shape Changing and Information Encryption. Macromol Rapid Commun 2021; 42:e2000747. [PMID: 33644938 DOI: 10.1002/marc.202000747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Polyion complex (PIC) hydrogels attract lots of studies because of the relatively definite network and excellent mechanical strength. However, the stability of the PIC hydrogel is poor in salt solutions due to the counter-ion screening effect, which restricts their applications. Besides, novel functions of the PIC hydrogels also need to be explored. In this work, a multifunctional PIC hydrogel is prepared by polymerizing a hydrophobic monomer 2-(diethylamino)ethyl methacrylate in poly(styrene sulfonic acid) aqueous solution with the presence of counter-ion NaCl. Fourier transform infrared (FTIR) spectra, water content, and mechanical properties of the hydrogel are investigated. The introduction of hydrophobic weak electrolyte into the hydrogel brings stable excellent mechanical strength even in NaCl solutions with high concentration and pH modulated softening and strengthening. Surprisingly, the hydrogel swells but is strengthened in HCl, while it shrinks but is softened in NaOH. pH induced shape memory and unique spontaneous shape changing is thus presented benefiting from this synergistic effect. Moreover, information encryption is realized on the PIC hydrogel owing to the transmittance change and the different water absorption capability of the hydrogel at different states. This new kind of PIC hydrogel proposes a new smart material in continuously actuating soft machines and secretive information transformation.
Collapse
Affiliation(s)
- Qiqian Hu
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Yuancheng Zhang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China.,Liming Research & Design Institute of Chemical Industry Co., Ltd., Luoyang, 471000, China
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen, 529100, China
| | - Weixiang Sun
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen, 529100, China
| | - Zhen Tong
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Wang J, Fan X, Liu H, Tang K. Self-assembly and metal ions-assisted one step fabrication of recoverable gelatin hydrogel with high mechanical strength. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1773499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jingru Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xialian Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Qiao Z, Cao M, Michels K, Hoffman L, Ji HF. Design and Fabrication of Highly Stretchable and Tough Hydrogels. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1691590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhen Qiao
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| | - Meijuan Cao
- Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, China
| | - Kathryn Michels
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| | - Lee Hoffman
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Cui H, Yu Y, Li X, Sun Z, Ruan J, Wu Z, Qian J, Yin J. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. J Mater Chem B 2019; 7:7207-7217. [PMID: 31663588 DOI: 10.1039/c9tb01494b] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emerging three-dimensional (3D) printing technique has shown prominent advantages to fabricate hydrogel-based tissue scaffolds for the regeneration of bone defects. Here, a tough polyion complex (PIC) hydrogel was synthesized, and multiwalled carbon nanotubes (MWCNTs) were incorporated into the PIC matrix to form the PIC/MWCNT biohybrid hydrogel, which was manufactured into 3D scaffolds by extrusion-based 3D printing for bone defect repair. To the best of our knowledge, this is the first study to combine CNTs with PIC hydrogels as biohybrid scaffolds for bone repair. The results from the in vitro cell culture demonstrated that the PIC/MWCNT scaffolds exhibited good biocompatibility with rat bone marrow-derived mesenchymal stem cells (rBMSCs) and facilitated the osteogenic differentiation of rBMSCs. Moreover, rBMSCs cultured on the PIC/MWCNT scaffolds exhibited a higher degree of osteogenic differentiation than those cultured on PIC scaffolds in terms of mineralized matrix formation and osteogenesis-related gene upregulation. The in vivo experiments in a calvarial defect model of Sprague-Dawley (SD) rats revealed that the PIC/MWCNT scaffolds significantly promoted the regeneration of calvarial defect healing. These findings suggest that the PIC hydrogel is a potential scaffold material for bone regeneration, and the addition of MWCNTs provides further enhancement in bone repair efficiency by the PIC/MWCNT scaffolds.
Collapse
Affiliation(s)
- Haomin Cui
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yaling Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Xiaokeng Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jihao Ruan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
12
|
Fang X, Sun J. One-Step Synthesis of Healable Weak-Polyelectrolyte-Based Hydrogels with High Mechanical Strength, Toughness, and Excellent Self-Recovery. ACS Macro Lett 2019; 8:500-505. [PMID: 35619368 DOI: 10.1021/acsmacrolett.9b00189] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excellent self-recovery is critically important for soft materials such as hydrogels and shape memory polymers. In this work, weak-polyelectrolyte-based hydrogels with high mechanical strength, toughness, healability, and excellent self-recovery are fabricated by one-step polymerization of acrylic acid and poly(ethylene glycol) methacrylate in the presence of oppositely charged branched polyethylenimine. The synergy of electrostatic and hydrogen-bonding interactions and the in situ formed polyelectrolyte complex nanoparticles endow the hydrogels with a tensile strength of ∼4.7 MPa, strain at break of ∼1200%, and toughness of ∼32.6 MJ m-3. The hydrogels can recover from an ∼300% strain to their initial state within 10 min at room temperature without any external assistance. Moreover, the hydrogels can heal from physical cut at room temperature and exhibit a prominent shape-memory performance with rapid shape recovery speed and high shape-fixing and shape-recovery ratios.
Collapse
Affiliation(s)
- Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
13
|
Wang Z, An G, Zhu Y, Liu X, Chen Y, Wu H, Wang Y, Shi X, Mao C. 3D-printable self-healing and mechanically reinforced hydrogels with host-guest non-covalent interactions integrated into covalently linked networks. MATERIALS HORIZONS 2019; 6:733-742. [PMID: 31572613 PMCID: PMC6768557 DOI: 10.1039/c8mh01208c] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Natural polymer hydrogels are one of the best biomaterials for soft tissue repair because of their excellent biocompatibility, biodegradability and low immune rejection. However, they lack mechanical strength matching that of natural tissue and desired functionality (e.g. self-healing and 3D-printability). To solve this problem, we developed a host-guest supramolecule (HGSM) with three arms covalently crosslinked with a natural polymer to construct a novel hydrogel with non-covalent bonds integrated in a covalently crosslinked network. The unique structure enabled the hydrogel to bear improved mechanical properties and show both self-healing and 3D printing capabilities. The three-armed HGSM was first prepared via the efficient non-covalent host-guest inclusion interactions between isocyanatoethyl acrylate-modified β-cyclodextrin (β-CD-AOI2) and acryloylated tetra-ethylene glycol-modified adamantane (A-TEG-Ad). Subsequently, a host-guest supramolecular hydrogel (HGGelMA) was obtained through copolymerization between the arms of HGSM and gelatin methacryloyl (GelMA) to form a covalently crosslinked network. The HGGelMA was robust, fatigue resistant, reproducible and rapidly self-healing. In HGGelMA, the covalent crosslinking maintained its overall shape whereas the weak reversible non-covalent host-guest interactions reinforced its mechanical properties and enabled it to rapidly self-heal upon fracturing. The reversible non-covalent interactions could be re-established upon breaking, so as to heal the hydrogel and dissipate energy to prevent catastrophic fracture propagation. Furthermore, the precursors of the HGGelMA were sufficiently viscous and could be rapidly photocrosslinked to produce a robust scaffold with an exquisite internal structure through 3D printing. The 3D-printed HGGelMA hydrogel scaffold was biocompatible, promoted cell adhesion and proliferation, and supported tissue in-growth. Our strategy of integrating non-covalently linked HGSM in a covalently linked hydrogel network represents a new approach to the development of natural polymers into biocompatible hydrogels with improved strength as well as desired self-healing and 3D-printability.
Collapse
Affiliation(s)
- Zhifang Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction and School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Geng An
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P. R. China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, United States
| | - Xuemin Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction and School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yunhua Chen
- National Engineering Research Centre for Tissue Restoration and Reconstruction and School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Yingjun Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction and School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction and School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, United States
| |
Collapse
|
14
|
Zhang XN, Wang YJ, Sun S, Hou L, Wu P, Wu ZL, Zheng Q. A Tough and Stiff Hydrogel with Tunable Water Content and Mechanical Properties Based on the Synergistic Effect of Hydrogen Bonding and Hydrophobic Interaction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01496] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Ning Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Jie Wang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengtong Sun
- Center for Advanced Low-dimension Materials & College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lei Hou
- Center for Advanced Low-dimension Materials & College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peiyi Wu
- Center for Advanced Low-dimension Materials & College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory for Advanced Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Affiliation(s)
- Fei Wang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - R. A. Weiss
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Drozdov A, deClaville Christiansen J. Mechanical response of double-network gels with dynamic bonds under multi-cycle deformation. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Wang YJ, Li CY, Wang ZJ, Zhao Y, Chen L, Wu ZL, Zheng Q. Hydrogen bond-reinforced double-network hydrogels with ultrahigh elastic modulus and shape memory property. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24620] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yan Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Chen Yu Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhi Jian Wang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
18
|
Liu S, Oderinde O, Hussain I, Yao F, Fu G. Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Zhu F, Lin J, Wu ZL, Qu S, Yin J, Qian J, Zheng Q. Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13685-13692. [PMID: 29608271 DOI: 10.1021/acsami.8b01873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conductive polymer hydrogels (CPHs) that combine the unique properties of hydrogels and electronic properties of conductors have shown their great potentials in wearable/implantable electronic devices, where materials with remarkable mechanical properties, high conductivity, and easy processability are demanding. Here, we have developed a new type of polyion complex/polyaniline (PIC/PAni) hybrid hydrogels that are tough, conductive, and can be facilely patterned. The incorporation of conductive phase (PAni) into PIC matrix through phytic acid resulted in hybrid gels with ∼65 wt % water; high conductivity while maintaining the key viscoelasticity of the tough matrix. The gel prepared from 1 M aniline (Ani) exhibited the breaking strain, fracture stress, tensile modulus, and electrical conductivity of 395%, 1.15 MPa, 5.31 MPa, and 0.7 S/m, respectively, superior to the most existing CPHs. The mechanical and electrical performance of PIC/PAni hybrid hydrogels exhibited pronounced rate-dependent and self-recovery behaviors. The hybrid gels can effectively detect subtle human motions as strain sensors. Alternating conductive/nonconductive patterns can be readily achieved by selective Ani polymerization using stencil masks. This facile patterning method based on PIC/PAni gels can be readily scaled up for fast fabrication of wavy gel circuits and multichannel sensor arrays, enabling real-time monitoring of the large-extent and large-area deformations with various sensitivities.
Collapse
Affiliation(s)
| | | | | | | | - Jun Yin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering , Zhejiang University , Hangzhou 310028 , China
| | | | | |
Collapse
|
20
|
Yu HC, Zhang H, Ren K, Ying Z, Zhu F, Qian J, Ji J, Wu ZL, Zheng Q. Ultrathin κ-Carrageenan/Chitosan Hydrogel Films with High Toughness and Antiadhesion Property. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9002-9009. [PMID: 29457455 DOI: 10.1021/acsami.7b18343] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designing tough biopolymer-based hydrogels as structural biomaterials has both scientific and practical significances. We report a facile approach to prepare polysaccharide-based hydrogel films with remarkable mechanical performances and antiadhesion property. The hydrogel films with a thickness of 40-60 μm were prepared by mixing aqueous solutions of κ-carrageenan (κ-CG) and protonated chitosan (CS), evaporating the solvent, and then swelling the casted film in water to achieve the equilibrium state. The obtained κ-CG/CS gel films with a water content of 48-88 wt % possessed excellent mechanical properties with a breaking stress of 2-6.7 MPa and a breaking strain of 80-120%, superior to the most existing biopolymer-based hydrogels. The extraordinary mechanical properties of gel films obtained over a wide range of mass ratio of κ-CG to CS should be rooted in the synergistic effect of ionic and hydrogen bonds between the κ-CG and CS molecules. In addition, the tough gel films showed good self-recovery ability, biocompatibility, and cell antiadhesion property, making them promising as an artificial dura mater and diaphragm materials in the surgery. The design principle by incorporating multiple noncovalent bonds to toughen the biopolymer-based hydrogels should be applicable to other systems toward structural biomaterials with versatile properties.
Collapse
Affiliation(s)
| | | | | | - Zhimin Ying
- Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310009 , China
| | | | | | | | | | | |
Collapse
|
21
|
de Silva UK, Choudhuri K, Bryant-Friedrich AC, Lapitsky Y. Customizing polyelectrolyte complex shapes through photolithographic directed assembly. SOFT MATTER 2018; 14:521-532. [PMID: 29300411 DOI: 10.1039/c7sm02022h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyelectrolyte complexes (PECs) form through the association of oppositely charged polymers and, due to their attractive properties, such as their mild/simple preparation and stimulus-sensitivity, attract widespread interest. The diverse applications of these materials often require control over PEC shapes. As a versatile approach to achieving such control, we report a new photolithographic directed assembly method for tailoring their structure. This method uses aqueous solutions of a polyelectrolyte, an oppositely charged monomer and a photoinitiator. Irradiation of these mixtures leads to site-specific polymerization of the ionic monomer into a polymer and, through this localized polyanion/polycation mixture formation, results in the assembly of PECs with 2-D and 3-D shapes that reflect the photoirradiation pattern. In addition to generating macroscopic PECs using photomasks, this photodirected PEC assembly method can be combined with multiphoton lithography, which enables the preparation of custom-shaped PECs with microscopic dimensions. Like other PECs, the custom-shaped structures formed through this photodirected assembly approach are stimulus-responsive, and can be made to switch shape or dissolve in response to changes in their external environments. This control over PEC shape and stimulus-sensitivity suggests the photopolymerization-based directed PEC assembly method as a potentially attractive route to stimulus-responsive soft device fabrication (e.g., preparation of intricately shaped, function-specific PECs through photolithographic 3-D printing).
Collapse
Affiliation(s)
- Udaka K de Silva
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, USA.
| | | | | | | |
Collapse
|
22
|
Ding H, Zhang XN, Zheng SY, Song Y, Wu ZL, Zheng Q. Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH-responsiveness. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Zhu FB, Yu HC, Lei WX, Ren KF, Qian J, Wu ZL, Zheng Q. Tough polyion complex hydrogel films of natural polysaccharides. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1977-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1017-1026. [DOI: 10.1016/j.msec.2017.03.287] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/31/2023]
|
25
|
Ag-loaded thermo-sensitive composite microgels for enhanced catalytic reduction of methylene blue. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41204-017-0026-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Affiliation(s)
- Yaoyao Chen
- Department of Materials Science
and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R. Shull
- Department of Materials Science
and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Zhu F, Cheng L, Wang ZJ, Hong W, Wu ZL, Yin J, Qian J, Zheng Q. 3D-Printed Ultratough Hydrogel Structures with Titin-like Domains. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11363-11367. [PMID: 28317377 DOI: 10.1021/acsami.7b02007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Titin is composed of repeated modular domains which unfold and dissipate energy upon loading. Here we employed such molecular-level paradigm to fabricate macroscopic ultratough hydrogel structures with titin-like domains, enabled by three-dimensional printing with multiple nozzles. Under stretch, the relatively thin and weak gel fibers in the printed structures break first and the hidden lengths postpone the failure of the main structures, mimicking the toughening principle in titin. These titin-like folded domains have been incorporated into a synthetic spider-web, which shows significantly enhanced extensibility and toughness. This work provides a new avenue of topological design for materials/structures with desired properties.
Collapse
Affiliation(s)
- Fengbo Zhu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, China
| | - Libo Cheng
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | - Zhi Jian Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou, 310027, China
| | - Wei Hong
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, China
- Department of Aerospace Engineering, Iowa State University , Ames, Iowa 50010, United States
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo 060-0810, Japan
| | - Zi Liang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou, 310027, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou, 310027, China
| |
Collapse
|
28
|
Tough and ultrastretchable hydrogels reinforced by poly(butyl acrylate-co-acrylonitrile) latex microspheres as crosslinking centers for hydrophobic association. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.051] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q. Metal-Coordination Complexes Mediated Physical Hydrogels with High Toughness, Stick–Slip Tearing Behavior, and Good Processability. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02150] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Si Yu Zheng
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongyao Ding
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jin Qian
- Key
Laboratory of Soft Machines and Smart Devices of Zhejiang Province,
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jun Yin
- The
State Key Laboratory of Fluid Power Transmission and Control Systems,
Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province,
School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Zi Liang Wu
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Li G, Zhang G, Sun R, Wong CP. Dually pH-responsive polyelectrolyte complex hydrogel composed of polyacrylic acid and poly (2-(dimthylamino) ethyl methacrylate). POLYMER 2016. [DOI: 10.1016/j.polymer.2016.11.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Zhu F, Cheng L, Yin J, Wu ZL, Qian J, Fu J, Zheng Q. 3D Printing of Ultratough Polyion Complex Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31304-31310. [PMID: 27779379 DOI: 10.1021/acsami.6b09881] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polyion complex (PIC) hydrogels have been proposed as promising engineered soft materials due to their high toughness and good processability. In this work, we reported manufacturing of complex structures with tough PIC hydrogels based on three-dimensional (3D) printing technology. The strategy relies on the distinct strength of ionic bonding in PIC hydrogels at different stages of printing. In concentrated saline solution, PIC forms viscous solution, which can be directly extruded out of a nozzle into water, where dialyzing out of salt and counterions results in sol-gel transition to form tough physical PIC gel with intricate structures. The printability of PIC solutions was systematically investigated by adjusting the PIC material formula and printing parameters in which proper viscosity and gelation rate were found to be key factors for successful 3D printing. Uniaxial tensile tests were performed to printed single fibers and multilayer grids, both exhibiting distinct yet controllable strength and toughness. More complex 3D structures with negative Poisson's ratio, gradient grid, and material anisotropy were constructed as well, demonstrating the flexible printability of PIC hydrogels. The methodology and capability here provide a versatile platform to fabricate complex structures with tough PIC hydrogels, which should broaden the use of such materials in applications such as biomedical devices and artificial tissues.
Collapse
Affiliation(s)
| | - Libo Cheng
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | | | | | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | | |
Collapse
|
33
|
|