1
|
Willerer T, Brinkmann T, Drechsler K. Development and Application of a Cooling Rate Dependent PVT Model for Injection Molding Simulation of Semi Crystalline Thermoplastics. Polymers (Basel) 2024; 16:3194. [PMID: 39599285 PMCID: PMC11598747 DOI: 10.3390/polym16223194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
This technical paper delves into the creation and application of an enhanced mathematical model for semi crystalline thermoplastics based on the Pressure-Volume-Temperature (PVT) Two Domain Tait Equation. The model is designed to incorporate the impact of the cooling rate on the specific volume of the material. This is achieved by utilizing Flash differential scanning calorimetry (fDSC) measurements, thereby ensuring a direct correlation to the actual behavior of the material in reality. The practical application of the model in the context of injection molding simulation was also considered. This was done by integrating the mathematical model into the Moldflow software via the Solver API. The paper underscores the discontinuity issue inherent in the traditional Tait equation with cooling rates and proposes a solution that guarantees a correct transition from the liquid to the solid phase, even at high cooling rates and pressures. The results demonstrated a realistic PVT curve across a wide range of cooling rates and high pressures. The model was put to the test using a 3D tetrahedron meshed calculation model in the injection molding simulation. This study marks a significant step forward in the simulation of injection molding processes, as it successfully bridges the gap between real material properties and simplified simulation, paving the way for more accurate and efficient simulations in the future.
Collapse
Affiliation(s)
- Thomas Willerer
- Chair of Carbon Composites, Technical University of Munich, 85748 Garching, Germany
- Webasto SE, Kraillinger Straße 5, 82131 Stockdorf, Germany
| | - Thomas Brinkmann
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany
| | - Klaus Drechsler
- Chair of Carbon Composites, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
2
|
Amnieh YA, Ghadirian S, Mohammadi N, Shadkhast M, Karbasi S. Evaluation of the effects of chitosan nanoparticles on polyhydroxy butyrate electrospun scaffolds for cartilage tissue engineering applications. Int J Biol Macromol 2023; 249:126064. [PMID: 37524286 DOI: 10.1016/j.ijbiomac.2023.126064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In this study, we synthesized and incorporated chitosan nanoparticles (Cs) into polyhydroxy butyrate (PHB) electrospun scaffolds for cartilage tissue engineering. The Cs nanoparticles were synthesized via an ionic gel interaction between Cs powder and tripolyphosphate (TPP). The mechanical properties, hydrophilicity, and fiber diameter of the PHB scaffolds with varying concentrations of Cs nanoparticles (1-5 wt%) were evaluated. The results of these evaluations showed that the scaffold containing 1 wt% Cs nanoparticles (P1Cs) was the optimum scaffold, with increased ultimate strength from 2.6 to 5.2 MPa and elongation at break from 5.31 % to 12.6 %. Crystallinity, degradation, and cell compatibility were also evaluated. The addition of Cs nanoparticles decreased crystallinity and accelerated hydrolytic degradation. MTT assay results showed that the proliferation of chondrocytes on the scaffold containing 1 wt% Cs nanoparticles were significantly higher than that on pure PHB after 7 days of cultivation. These findings suggest that the electrospun P1Cs scaffold has promising potential as a substrate for cartilage tissue engineering applications. This combination offers a promising approach for the fabrication of biomimetic scaffolds with enhanced mechanical properties, hydrophilicity, and cell compatibility for tissue engineering applications.
Collapse
Affiliation(s)
- Yasamin Alikhasi Amnieh
- Department of Veterinary Histology, School of Veterinary, Shahrekord University, Shahrekord, Iran
| | - Sepideh Ghadirian
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nayereh Mohammadi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shadkhast
- Basic Science of Veterinary Faculty, Shahrekord University, Shahrekord, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Gohn AM, Zhang X, McHale A, Androsch R, Rhoades AM. Competition Between Heterogeneous Nucleation and Flow-Induced Crystallization of Polyamide 66 and its Carbon Nanotube Composites. Macromol Rapid Commun 2022; 43:e2200418. [PMID: 36029147 DOI: 10.1002/marc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/12/2022] [Indexed: 11/05/2022]
Abstract
Both heterogeneous nucleation and flow-induced entropy reduction are the two well-known factors that accelerate polymer crystallization. However, the interplay of nucleation and flow-induced acceleration is still poorly understood. This work investigates the nucleating effect of carbon nanotubes (CNT) on both the quiescent and flow-induced crystallization kinetics of polyamide 66 (PA 66). The quiescent crystallization study indicates that CNT acts as a powerful nucleant, as suggested by the fact that the critical cooling rate to bypass crystallization and create the amorphous glassy state changes from 1,000 K/s in PA 66 neat resin to a rate faster than 4,000 K/s in the PA 66 nanocomposites. The flow-induced crystallization study indicates PA 66 onset crystallization time and morphology depend on the shear work introduced by rotational rheometry. A combined acceleration effect from CNT nucleants and flow-induced crystallization (FIC) persists when the CNT loading is under the saturation limit. However, if CNT loading meets the saturation limit, specific shear work shows no impact on the crystallization time, providing evidence that the role of the FIC acceleration effect no longer exists when nucleant acceleration dominates the crystallization of PA 66. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anne M Gohn
- School of Engineering, Penn State Erie, 4701 College Drive, Erie, PA 16563, United States.,Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099, Halle/Saale, Germany
| | - Xiaoshi Zhang
- School of Engineering, Penn State Erie, 4701 College Drive, Erie, PA 16563, United States
| | - Alexander McHale
- School of Engineering, Penn State Erie, 4701 College Drive, Erie, PA 16563, United States
| | - René Androsch
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099, Halle/Saale, Germany
| | - Alicyn M Rhoades
- School of Engineering, Penn State Erie, 4701 College Drive, Erie, PA 16563, United States
| |
Collapse
|
4
|
Shokrollahi M, Marouf BT, Bagheri R. Role of the nucleating agent masterbatch carrier resin in the nonisothermal crystallization kinetics of polypropylene. Polym J 2022. [DOI: 10.1038/s41428-022-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Zhang X, Gohn A, Mendis G, Buzinkai JF, Weigand SJ, Rhoades AM. Probing Three Distinct Crystal Polymorphs of Melt-Crystallized Polyamide 6 by an Integrated Fast Scanning Calorimetry Chip System. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoshi Zhang
- School of Engineering, Penn State Behrend, Erie, Pennsylvania 16563, United States
| | - Anne Gohn
- School of Engineering, Penn State Behrend, Erie, Pennsylvania 16563, United States
| | - Gamini Mendis
- School of Engineering, Penn State Behrend, Erie, Pennsylvania 16563, United States
| | | | - Steven J. Weigand
- DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL Building 432-A004, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Alicyn M. Rhoades
- School of Engineering, Penn State Behrend, Erie, Pennsylvania 16563, United States
| |
Collapse
|
6
|
An effective nucleating agent for isotactic polypropylene (iPP): Zinc bis- (nadic anhydride) double-decker silsesquioxanes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Zhang K, Peng X, Xin Z, Zhao S. Calcium Salt of L-Isoleucine-Phthalate: An α-Nucleating Agent That Enhances the Crystallization Behavior and Mechanical Properties of Isotactic Polypropylene. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1879467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ke Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoshan Peng
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhong Xin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Shicheng Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Gloger D, Mileva D, Zhuravlev E, Schick C. A
DSC
study of polypropylene chain branching effects on structure formation under rapid cooling and reheating from the amorphous glass. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Gorbunova MA, Anokhin DV, Badamshina ER. Recent Advances in the Synthesis and Application of Thermoplastic Semicrystalline Shape Memory Polyurethanes. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420050073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Gorbunova MA, Anokhin DV, Zaitsev VY, Grishchuk AA, Badamshina ER. Roles of phase separation and crystallization in the structure formation of new segmented polyurethane ureas and their nanocomposites with single-walled carbon nanotubes. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2957-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Jariyavidyanont K, Zhuravlev E, Schick C, Androsch R. Kinetics of homogeneous crystal nucleation of polyamide 11 near the glass transition temperature. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Katalee Jariyavidyanont
- Interdisciplinary Center for Transfer‐oriented Research in Natural Sciences Martin Luther University Halle‐Wittenberg Halle/Saale Germany
| | | | - Christoph Schick
- Institute of Physics University of Rostock Rostock Germany
- Department of Physical Chemistry Kazan Federal University Kazan Russia
| | - René Androsch
- Interdisciplinary Center for Transfer‐oriented Research in Natural Sciences Martin Luther University Halle‐Wittenberg Halle/Saale Germany
| |
Collapse
|
12
|
Qin W, Liu K, Xin Z, Ling H, Zhou S, Zhao S. Zinc pimelate as an effective β‐nucleating agent for isotactic polypropylene at elevated pressures and under rapid cooling rates. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Qin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State‐Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Kehua Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State‐Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Zhong Xin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State‐Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Hao Ling
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State‐Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Shuai Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State‐Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Shicheng Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State‐Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| |
Collapse
|
13
|
Uniaxial tensile deformation of microinjection molded PCL/SWCNTs nanocomposites: Effect of interfacial “soft epitaxy” on the structural evolution as studied by synchrotron SAXS and WAXD techniques. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Gohn AM, Seo J, Colby RH, Schaake RP, Androsch R, Rhoades AM. Crystal nucleation in poly(ether ether ketone)/carbon nanotube nanocomposites at high and low supercooling of the melt. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Nishikawa R, Aridome N, Ojima N, Yamaguchi M. Structure and properties of fiber-reinforced polypropylene prepared by direct incorporation of aqueous solution of poly(vinyl alcohol). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Monnier X, Delpouve N, Saiter-Fourcin A. Distinct dynamics of structural relaxation in the amorphous phase of poly(l-lactic acid) revealed by quiescent crystallization. SOFT MATTER 2020; 16:3224-3233. [PMID: 32162627 DOI: 10.1039/c9sm02541c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fast scanning calorimetry (FSC) experiments were performed to investigate physical aging in amorphous and semi-crystalline poly(l-lactic acid)s (PLLAs) that were thermally crystallized under conditions leading to the α'- or α-crystalline form, and either favouring or inhibiting the development of a rigid amorphous fraction (RAF). The enthalpy of recovery was calculated after two procedures of rescaling to the content of the whole amorphous phase and also to the only content of the mobile amorphous fraction (MAF), which helped in clarifying the contribution of the RAF. From the dependence of the structural relaxation rate on the aging temperature, two regimes were evidenced for all samples. In the aging temperature domain situated close to the glass transition, the structural relaxation occurs significantly faster in the MAF. Its rate is independent of the aging temperature and is not influenced by the microstructure. However, the distance to equilibrium is higher in samples for which the coupling is strong between crystal and amorphous, implying that the time to reach equilibrium is also higher. In contrast, at low aging temperatures, for which the whole amorphous phase can be considered as solid, MAF and RAF exhibit the same structrural relaxation rate. This convergence in the relaxation kinetics by decreasing the temperature of physical aging was interpreted as the evolution of relaxation dynamics in the MAF from segmental to local. This change is highlighted by the comparison between MAF and RAF relaxation kinetics, but it occurs similarly in a pure amorphous system.
Collapse
Affiliation(s)
- Xavier Monnier
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France.
| | - Nicolas Delpouve
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France.
| | - Allisson Saiter-Fourcin
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France.
| |
Collapse
|
17
|
Han C, Sahle-Demessie E, Varughese E, Shi H. Polypropylene-MWCNT composite degradation, release, detection, and toxicity of MWCNT during accelerated aging. ENVIRONMENTAL SCIENCE. NANO 2019; 6:1876-1894. [PMID: 32704375 PMCID: PMC7377243 DOI: 10.1039/c9en00153k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomaterials (NM) are incorporated into polymers to enhance their properties. However, there are a limited number of studies on the aging of these nanocomposites and the resulting potential release of NM. To characterize NM at critical points in their life cycles, polypropylene (PP) and multiwall carbon nanotube filled PP (PP-MWCNT) plates with different thicknesses (from 0.25 mm to 2 mm) underwent accelerated weathering in a chamber that simulates solar irradiation and rainfall. The physicochemical changes of the plates depended on the radiation exposure, the plate thickness, and the presence of CNT fillers. Photodegradation increased with aging time, making the exposed surface more hydrophilic, decreasing the surface hardness and creating surface stress-cracks. Aged surface and cross-section showed crazing due to the polymer bond scission and the formation of carbonyls. The degradation was higher near the UV-exposed surface as the intensity of the radiation and oxygen diffusion decreased with increasing depth of the plates, resulting in an oxidation layer directly proportional to oxygen diffusion. Thus, sample thickness determines the kinetics of the degradation reaction and the transport of reactive species. Plastic fragments, which are less than 1 mm, and free CNTs were released from weathered MWCNT-PP. The concentrations of released NM that were estimated using ICP-MS, increased with prolonged aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability, were performed on the released CNTs. The toxicity of the released fragments and CNTs to A594 adenocarcinomic human alveolar basal epithelial cells was observed. The released polymer fragments and CNTs did not show significant toxicity under the experimental conditions in this study. This study will help manufacturers, users of consumer products with nanocomposites and policymakers in the development of testing guidelines, predictive models, and risk assessments and risk based-formulations of NM exposure.
Collapse
Affiliation(s)
- Changseok Han
- Department of Environmental Engineering, INHA University, Incheon 22212, Korea
- Oak Ridge Institute for Science and Education, Oak Ridge TN, 37831, USA
| | - E. Sahle-Demessie
- Oak Ridge Institute for Science and Education, Oak Ridge TN, 37831, USA
| | - Eunice Varughese
- Oak Ridge Institute for Science and Education, Oak Ridge TN, 37831, USA
| | - Honglan Shi
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Laboratory, Cincinnati, OH 45268, USA; Missouri University of Science and Technology, Department of Chemistry, Rolla, MO 65409, USA
| |
Collapse
|
18
|
Papkov D, Delpouve N, Delbreilh L, Araujo S, Stockdale T, Mamedov S, Maleckis K, Zou Y, Andalib MN, Dargent E, Dravid VP, Holt MV, Pellerin C, Dzenis YA. Quantifying Polymer Chain Orientation in Strong and Tough Nanofibers with Low Crystallinity: Toward Next Generation Nanostructured Superfibers. ACS NANO 2019; 13:4893-4927. [PMID: 31038925 DOI: 10.1021/acsnano.8b08725] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Advanced fibers revolutionized structural materials in the second half of the 20th century. However, all high-strength fibers developed to date are brittle. Recently, pioneering simultaneous ultrahigh strength and toughness were discovered in fine (<250 nm) individual electrospun polymer nanofibers (NFs). This highly desirable combination of properties was attributed to high macromolecular chain alignment coupled with low crystallinity. Quantitative analysis of the degree of preferred chain orientation will be crucial for control of NF mechanical properties. However, quantification of supramolecular nanoarchitecture in NFs with low crystallinity in the ultrafine diameter range is highly challenging. Here, we discuss the applicability of traditional as well as emerging methods for quantification of polymer chain orientation in nanoscale one-dimensional samples. Advantages and limitations of different techniques are critically evaluated on experimental examples. It is shown that straightforward application of some of the techniques to sub-wavelength-diameter NFs can lead to severe quantitative and even qualitative artifacts. Sources of such size-related artifacts, stemming from instrumental, materials, and geometric phenomena at the nanoscale, are analyzed on the example of polarized Raman method but are relevant to other spectroscopic techniques. A proposed modified, artifact-free method is demonstrated. Outstanding issues and their proposed solutions are discussed. The results provide guidance for accurate nanofiber characterization to improve fundamental understanding and accelerate development of nanofibers and related nanostructured materials produced by electrospinning or other methods. We expect that the discussion in this review will also be useful to studies of many biological systems that exhibit nanofilamentary architectures and combinations of high strength and toughness.
Collapse
Affiliation(s)
- Dimitry Papkov
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
- Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0298 , United States
| | - Nicolas Delpouve
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Laurent Delbreilh
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Steven Araujo
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Taylor Stockdale
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Sergey Mamedov
- Division of HORIBA Instruments, Inc. , HORIBA Scientific , 20 Knightsbridge Road , Piscataway , New Jersey 08854 , United States
| | - Kaspars Maleckis
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Yan Zou
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Mohammad Nahid Andalib
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Eric Dargent
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Vinayak P Dravid
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Martin V Holt
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Christian Pellerin
- Département de chimie , Université de Montréal , Montréal , QC H3C 3J7 , Canada
| | - Yuris A Dzenis
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
- Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0298 , United States
| |
Collapse
|
19
|
Schawe JE. Identification of three groups of polymers regarding their non-isothermal crystallization kinetics. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Jafari SMA, Khajavi R, Goodarzi V, Kalaee MR, Khonakdar HA. Nonisothermal crystallization kinetic studies on melt processed poly(ethylene terephthalate)/polylactic acid blends containing graphene oxide and exfoliated graphite nanoplatelets. J Appl Polym Sci 2019. [DOI: 10.1002/app.47569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyed Mohammad Ali Jafari
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| | - Ramin Khajavi
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center; Baqiyatallah University of Medical Sciences; P.O. Box 19945-546, Tehran Iran
| | - Mohammad R. Kalaee
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| | - Hossein A. Khonakdar
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| |
Collapse
|
21
|
|
22
|
Liu R, Yang L, Qiu X, Wu H, Zhang Y, Liu Y, Zhou Z, Ming Y, Hao T, Nie Y. One-dimensional nanofiller induced crystallization in random copolymers studied by dynamic Monte Carlo simulations. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1515485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rongjuan Liu
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Luyao Yang
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Xiaoyan Qiu
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Haitao Wu
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yongqiang Zhang
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yong Liu
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhiping Zhou
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yongqiang Ming
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Tongfan Hao
- Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yijing Nie
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
23
|
Zhao S, Qin W, Xin Z, Zhou S, Gong H, Ni Y, Zhang K. In situ generation of a self-dispersed β-nucleating agent with increased nucleation efficiency in isotactic polypropylene. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Non-isothermal crystallization kinetics of Poly(Butylene succinate) (PBS) nanocomposites with different modified carbon nanotubes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Schawe JEK, Budde F, Alig I. Non-isothermal crystallization of polypropylene with sorbitol-type nucleating agents at cooling rates used in processing. POLYM INT 2018. [DOI: 10.1002/pi.5581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Felix Budde
- Division Plastics; Fraunhofer Institute for Structural Durability and System Reliability LBF; Darmstadt Germany
| | - Ingo Alig
- Division Plastics; Fraunhofer Institute for Structural Durability and System Reliability LBF; Darmstadt Germany
| |
Collapse
|
26
|
Rhoades AM, Gohn AM, Seo J, Androsch R, Colby RH. Sensitivity of Polymer Crystallization to Shear at Low and High Supercooling of the Melt. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00195] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alicyn M. Rhoades
- Pennsylvania State
University, Behrend College, 4701 College Drive, Erie, Pennsylvania 16563, United States
| | - Anne M. Gohn
- Pennsylvania State
University, Behrend College, 4701 College Drive, Erie, Pennsylvania 16563, United States
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06009 Halle/Saale, Germany
| | - Jiho Seo
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - René Androsch
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06009 Halle/Saale, Germany
| | - Ralph H. Colby
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|