1
|
Wulandari R, Ardiansyah A, Setiyanto H, Saraswaty V. A novel non-enzymatic electrochemical uric acid sensing method based on nanohydroxyapatite from eggshell biowaste immobilized on a zinc oxide nanoparticle modified activated carbon electrode (Hap-Esb/ZnONPs/ACE). RSC Adv 2023; 13:12654-12662. [PMID: 37101531 PMCID: PMC10123379 DOI: 10.1039/d3ra01214j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Hydroxyapatite-derived eggshell biowaste (Hap-Esb) has been fabricated and developed for the electrochemical detection of uric acid (UA). The physicochemical characteristics of the Hap-Esb and modified electrodes were evaluated using a scanning electron microscope and X-ray Diffraction analysis. Utilized as UA sensors, the electrochemical behavior of modified electrodes (Hap-Esb/ZnONPs/ACE) was assessed using cyclic voltammetry (CV). The superior peak current response observed for the oxidation of UA at Hap-Esb/ZnONPs/ACE, which was 13 times higher than that of the Hap-Esb/activated carbon electrode (Hap-Esb/ACE) is attributed to the simple immobilization of Hap-Esb on zinc oxide nanoparticle-modified ACE. The UA sensor exhibited a linear range at 0.01 to 1 μM, low detection limit (0.0086 μM), and excellent stability, which surpass the existing Hap-based electrodes reported in the literature. The facile UA sensor subsequently realized is also advantaged by its simplicity, repeatability, reproducibility, and low cost, applicable for real sample analysis (human urine sample).
Collapse
Affiliation(s)
- Retno Wulandari
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
- Chemical Engineering Department, Faculty of Engineering, Universitas Bhayangkara Jakarta Raya Jl. Harsono RM No. 67 Jakarta Indonesia
| | - Ardi Ardiansyah
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| | - Henry Setiyanto
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia
| | - Vienna Saraswaty
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| |
Collapse
|
2
|
Savić M, Janošević Ležaić A, Gavrilov N, Pašti I, Nedić Vasiljević B, Krstić J, Ćirić-Marjanović G. Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1018. [PMID: 36770026 PMCID: PMC9919207 DOI: 10.3390/ma16031018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal-organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g-1), electrical conductivity (up to 0.24 S cm-1), and specific capacitance, Cspec, (up to 238.2 F g-1 at 10 mV s-1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1-10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g-1 and 341 F g-1, respectively. The developed composites represent promising electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Marjetka Savić
- Vinča Institute of Nuclear Science, University of Belgrade, National Institute of the Republic of Serbia, P.O. Box 522, 11001 Belgrade, Serbia
| | | | - Nemanja Gavrilov
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Bojana Nedić Vasiljević
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Jugoslav Krstić
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
3
|
Qin X, Xu H, Zhang G, Wang J, Wang Z, Zhao Y, Wang Z, Tan T, Bockstaller MR, Zhang L, Matyjaszewski K. Enhancing the Performance of Rubber with Nano ZnO as Activators. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48007-48015. [PMID: 33040537 DOI: 10.1021/acsami.0c15114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The vulcanization of rubber is a chemical process to improve the mechanical properties by cross-linking unsaturated polymer chains. Zinc oxide (ZnO) acts as an activator, boosting the rubbers' sulfur vulcanization. Maintaining the level of ZnO content in the rubber compounds as low as possible is desirable, not only for economic reasons but also to reduce the environmental footprint of the process. In this contribution, octylamine (OA) capped ZnO nanoparticles (5 nm diameter), prepared through a thermal decomposition method, were demonstrated to be efficient activators for the sulfur vulcanization of natural rubber, enabling the reduction of the required amount of ZnO as compared to commercial systems. The effect of different ZnO activators (OA capped ZnO/commercial indirect process ZnO) on the curing characteristics, cross-linking densities, and mechanical performance, as well as the thermal behavior of rubber compounds, were investigated. Compared to the commercial indirect process ZnO, OA capped ZnO nanoparticles not only effectively enhanced the curing efficiency of natural rubber but also improved the mechanical performance of the composites after vulcanization. This was interpreted as, by applying the OA capped ZnO nanoparticles, the ZnO levels in rubber compounding were significantly reduced under the industrial vulcanization condition (151 °C, 30 min).
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Haoshu Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ganggang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiadong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tianwei Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Michael R Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Sun M, Gottlieb E, Yuan R, Ghosh S, Wang H, Selhorst R, Huggett A, Du X, Yin R, Waldeck DH, Matyjaszewski K, Kowalewski T. Polyene-Free Photoluminescent Polymers via Hydrothermal Hydrolysis of Polyacrylonitrile in Neutral Water. ACS Macro Lett 2020; 9:1403-1408. [PMID: 35638623 DOI: 10.1021/acsmacrolett.0c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the hydrothermally enhanced hydrolysis of polyacrylonitrile (PAN) in neutral water, which generates photoluminescent polymers with low unsaturation degrees. Despite the hydrophobic nature of PAN, the product can be dissolved in water at a high concentration (≥100 g/L). The product exhibits complete absence of alkenes or aromatic structures, and photoluminescence originates from newly formed N- and O-containing groups. The presence of both n to π* and π to π* transitions is confirmed by time-dependent density functional theory (TD-DFT) calculations. The efficient transformation of PAN benefits from the enhanced hydrolysis of nitrile groups. While similar reactions have been reported previously under alkaline environments, we demonstrate that efficient hydrolysis can also occur in neutral water under the hydrothermal condition. Two additional methods based on different mechanisms are discussed to demonstrate the simplicity and efficiency of the hydrothermal reaction.
Collapse
Affiliation(s)
| | | | | | - Supriya Ghosh
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | | | | |
Collapse
|
5
|
Free-Standing PVDF/Reduced Graphene Oxide Film for All-Solid-State Flexible Supercapacitors towards Self-Powered Systems. MICROMACHINES 2020; 11:mi11020198. [PMID: 32075070 PMCID: PMC7074646 DOI: 10.3390/mi11020198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022]
Abstract
The development of polymer-based devices has attracted much attention due to their miniaturization, flexibility, lightweight and sustainable power sources with high efficiency in the field of wearable/portable electronics, and energy system. In this work, we proposed a polyvinylidene fluoride (PVDF)-based composite matrix for both energy harvesting and energy storage applications. The physicochemical characterizations, such as X-ray diffraction, laser Raman, and field-emission scanning electron microscopy (FE-SEM) analyses, were performed for the electrospun PVDF/sodium niobate and PVDF/reduced graphene oxide composite film. The electrospun PVDF/sodium niobate nanofibrous mat has been utilized for the energy harvester which shows an open circuit voltage of 40 V (peak to peak) at an applied compressive force of 40 N. The PVDF/reduced graphene oxide composite film acts as the electrode for the symmetric supercapacitor (SSC) device fabrication and investigated for their supercapacitive properties. Finally, the self-charging system has been assembled using PVDF/sodium niobate (energy harvester), and PVDF/reduced graphene oxide SSC (energy storage) and the self-charging capability is investigated. The proposed self-charging system can create a pathway for the all-polymer based composite high-performance self-charging system.
Collapse
|
6
|
Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101180] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Multifunctional ZnO-porous carbon composites derived from MOF-74(Zn) with ultrafast pollutant adsorption capacity and supercapacitance properties. J Colloid Interface Sci 2019; 554:260-268. [DOI: 10.1016/j.jcis.2019.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/19/2022]
|
8
|
Li H, Zhao C, Wang X, Meng J, Zou Y, Noreen S, Zhao L, Liu Z, Ouyang H, Tan P, Yu M, Fan Y, Wang ZL, Li Z. Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801625. [PMID: 30937259 PMCID: PMC6425441 DOI: 10.1002/advs.201801625] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 05/18/2023]
Abstract
Implantable medical electronic devices are usually powered by batteries or capacitors, which have to be removed from the body after completing their function due to their non-biodegradable property. Here, a fully bioabsorbable capacitor (BC) is developed for life-time implantation. The BC has a symmetrical layer-by-layer structure, including polylactic acid (PLA) supporting substrate, PLA nanopillar arrays, self-assembled zinc oxide nanoporous layer, and polyvinyl alcohol/phosphate buffer solution (PVA/PBS) hydrogel. The as-fabricated BC can not only work normally in air but also in a liquid environment, including PBS and the animal body. Long-term normal work time is achieved to 30 days in PBS and 50 days in Sprague-Dawley (SD) rats. The work time of BC in the liquid environment is tunable from days to weeks by adopting different encapsulations along BC edges. Capacitance retention of 70% is achieved after 3000 cycles. Three BCs in series can light up 15 green light-emitting diodes (LEDs) in vivo. Additionally, after completing its mission, the BC can be fully degraded in vivo and reabsorbed by a SD rat. Considering its performance, the developed BC has a great potential as a fully bioabsorbable power source for transient electronics and implantable medical devices.
Collapse
Affiliation(s)
- Hu Li
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
- National Research Center for Rehabilitation Technical AidsBeijing100176P. R. China
| | - Chaochao Zhao
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xinxin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Jianping Meng
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yang Zou
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sehrish Noreen
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Luming Zhao
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zhuo Liu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
- National Research Center for Rehabilitation Technical AidsBeijing100176P. R. China
| | - Han Ouyang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Puchuan Tan
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Min Yu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
- National Research Center for Rehabilitation Technical AidsBeijing100176P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332‐0245USA
| | - Zhou Li
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
9
|
Zhang J, Chen Z, Wang Y, Yan X, Zhou Z, Lv H. All-Solid-State Flexible Asymmetric Supercapacitor with Good Cycling Performance and Ultra-Power Density by Electrode Materials of Core-Shell CoNiO 2@NiAl-Layered Double Hydroxide and Hollow Spherical α-Fe 2O 3. NANOSCALE RESEARCH LETTERS 2019; 14:87. [PMID: 30868362 PMCID: PMC6419639 DOI: 10.1186/s11671-019-2910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
High electrochemical performance of asymmetric supercapacitor (ASC) depends on exquisite nanostructure design and synthesis of electrodes, including structural controllable design and synthesis of high theoretical performance materials and nanocomposite materials. Herein, a template-free hierarchical core-shell nanostructure of CoNiO2@NiAl-layered double hydroxide (NiAl-LDH) and α-Fe2O3 with a hollow spherical structure composed of nanoparticles are successfully prepared. The CoNiO2@NiAl-LDH as the cathode electrode and the hollow spherical α-Fe2O3 as the anode electrode of the ASC devices exhibit superior electrochemical performance. The gel of polyvinyl alcohol (PVA) and KOH acts as the solid electrolyte and the separator to assemble into the all-solid-state flexible ASC devices. Two of the CoNiO2@NiAl-LDH//α-Fe2O3 ASC devices in series are fabricated to meet the voltage requirement of mobile energy equipment, which exhibit a maximum energy density of 65.68 Wh kg-1 at the power density of 369.45 W kg-1. Interestingly, in addition to many advantages that the solid electrolyte in ASC devices already have, we find that it can be an alternative way of solving the problem of iron oxide cycling performance, and of course it can also be used as a reference for other materials with poor cycling performance.
Collapse
Affiliation(s)
- Jijun Zhang
- School of Optoelectronic Science And Engineering, University of Electronic Science and Technology of China, North Jianshe Road 4, Chengdu, 610054 China
| | - Zexiang Chen
- School of Optoelectronic Science And Engineering, University of Electronic Science and Technology of China, North Jianshe Road 4, Chengdu, 610054 China
| | - Yan Wang
- School of Optoelectronic Science And Engineering, University of Electronic Science and Technology of China, North Jianshe Road 4, Chengdu, 610054 China
| | - Xinyu Yan
- School of Optoelectronic Science And Engineering, University of Electronic Science and Technology of China, North Jianshe Road 4, Chengdu, 610054 China
| | - Zhiyu Zhou
- School of Optoelectronic Science And Engineering, University of Electronic Science and Technology of China, North Jianshe Road 4, Chengdu, 610054 China
| | - Huifang Lv
- School of Optoelectronic Science And Engineering, University of Electronic Science and Technology of China, North Jianshe Road 4, Chengdu, 610054 China
| |
Collapse
|