1
|
Rath R, Kumar P, Unnikrishnan L, Mohanty S, Nayak SK. Fabrication of highly selective SPVDF-co-HFP/APTES-SiO2/Nafion nanocomposite membranes for PEM fuel cells. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Kulasekaran P, Maria Mahimai B, Sivasubramanian G, Pushparaj H, Deivanayagam P. Zinc‐trimesic acid metal–organic framework incorporated sulfonated poly(ether ether sulfone) based polymer composite membranes for fuel cell. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Berlina Maria Mahimai
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur India
| | | | | | - Paradesi Deivanayagam
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur India
| |
Collapse
|
3
|
Feng M, Ma Y, Chang J, Lin J, Xu Y, Feng Y, Huang Y, Luo J. Sulfonated Poly(arylene ether nitrile)-Based Composite Membranes Enhanced with Ca2+ Bridged Carbon Nanotube-Graphene Oxide Networks. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Zakaria Z, Kamarudin SK, Kudus MHA, Wahid KAA. κ‐carrageenan/polyvinyl alcohol‐graphene oxide biopolymer composite membrane for application of air‐breathing passive direct ethanol fuel cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.52256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Siti Kartom Kamarudin
- Fuel Cell Institute Universiti Kebangsaan Malaysia Bangi Malaysia
- Research Center of Sustainable Process Technology Universiti Kebangsaan Malaysia Bangi Malaysia
| | | | - Khairul Anuar Abd Wahid
- Additive Design & Manufacturing System (ADAMS), Mechanical Engineering Section Universiti Kuala Lumpur, Malaysia France Institute Bangi Malaysia
| |
Collapse
|
5
|
Kulasekaran P, Maria Mahimai B, Deivanayagam P. Novel sulfonated polystyrene-block-poly (ethylene-ran- butylene)-block-poly styrene / graphene oxide / ammonium ionic liquid based ternary composite: An efficient ion-exchange solid electrolyte. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1988965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Poonkuzhali Kulasekaran
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Berlina Maria Mahimai
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Paradesi Deivanayagam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
6
|
Fouladvand M, Naji L, Javanbakht M, Rahmanian A. Electrochemical characterization of Li-ion conducting polyvinylidene fluoride/sulfonated graphene oxide nanocomposite polymer electrolyte membranes for lithium ion batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Divya K, Rana D, Rameesha L, Sri Abirami Saraswathi MS, Nagendran A. Highly selective custom‐made chitosan based membranes with reduced fuel permeability for direct methanol fuel cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.51366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kumar Divya
- Polymeric Materials Research Lab, PG & Research Department of Chemistry Alagappa Government Arts College Karaikudi India
| | - Dipak Rana
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Laila Rameesha
- Polymeric Materials Research Lab, PG & Research Department of Chemistry Alagappa Government Arts College Karaikudi India
| | | | - Alagumalai Nagendran
- Polymeric Materials Research Lab, PG & Research Department of Chemistry Alagappa Government Arts College Karaikudi India
| |
Collapse
|
8
|
Feng Y, Zhong S, Cui X, Li Y, Ding C, Cui L, Wang M, Yang Y, Liu W. The synergistic effect of polyorganosilicon and sulfonic groups functionalized graphene oxide on the performance of sulfonated poly (ether ether ketone ketone) polyelectrolyte material. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
He M, Wang L, Zhang Z, Zhang Y, Zhu J, Wang X, Lv Y, Miao R. Stable Forward Osmosis Nanocomposite Membrane Doped with Sulfonated Graphene Oxide@Metal-Organic Frameworks for Heavy Metal Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57102-57116. [PMID: 33317267 DOI: 10.1021/acsami.0c17405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A sulfonated graphene oxide@metal-organic framework-modified forward osmosis nanocomposite (SGO@UiO-66-TFN) membrane was developed to improve stability and heavy metal removal performance. An in situ growth method was applied to uniformly distribute UiO-66 nanomaterial with a frame structure on SGO nanosheets to form SGO@UiO-66 composite nanomaterial. This nanomaterial was then added to a polyamide layer using interfacial polymerization. The cross-linking between SGO@UiO-66 and m-phenylenediamine improved the stability of the nanomaterial in the membrane. Additionally, the water permeability was improved because of additional water channels introduced by SGO@UiO-66. SGO, with its lamellar structure, and UiO-66, with its frame structure, made the diffusion path of the solute more circuitous, which improved the heavy metal removal and salt rejection performances. Moreover, the hydrophilic layer of the SGO@UiO-66-TFN membrane could block contaminants and loosen the structure of the pollution layer, ensuring that the membrane maintained a high removal rate. The water flux and reverse solute flux of the SGO@UiO-66-TFN membrane reached 14.77 LMH and 2.95 gMH, and compared with the thin-film composite membrane, these values were increased by 41 and 64%, respectively. The membrane also demonstrated a good heavy metal ion removal performance. In 2 h, the heavy metal ion removal rate (2000 ppm Cu2+ and Pb2+) was greater than 99.4%, and in 10 h the removal rate was greater than 97.5%.
Collapse
Affiliation(s)
- Miaolu He
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Lei Wang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Zhe Zhang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Yan Zhang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Jiani Zhu
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Xudong Wang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Yongtao Lv
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Rui Miao
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| |
Collapse
|
10
|
Divya K, Rana D, Saraswathi MSSA, Gokila P, Nagendran A. Sulfonated poly (vinylidene fluoride‐co‐hexafluoropropylene) nanocomposite membranes with high selectivity, stability, and vanadium‐ion barrier for vanadium redox flow batteries. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kumar Divya
- Polymeric Materials Research Lab, PG & Research Department of Chemistry Alagappa Government Arts College Karaikudi India
| | - Dipak Rana
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | | | - Pandian Gokila
- Polymeric Materials Research Lab, PG & Research Department of Chemistry Alagappa Government Arts College Karaikudi India
| | - Alagumalai Nagendran
- Polymeric Materials Research Lab, PG & Research Department of Chemistry Alagappa Government Arts College Karaikudi India
| |
Collapse
|
11
|
Maria Mahimai B, Kulasekaran P, Sivasubramanian G, Deivanayagam P. Sulfonated Poly (Ether Ether Ketone) / Barium Strontium Titanium Oxide Polymer Nanocomposite Membranes for Fuel Cell Applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1765385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Berlina Maria Mahimai
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | - Poonkuzhali Kulasekaran
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | | | - Paradesi Deivanayagam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology , Kattankulathur, TN, India
| |
Collapse
|
12
|
Altaf F, Batool R, Gill R, Shabir MA, Drexler M, Alamgir F, Abbas G, Sabir A, Jacob KI. Novel N-p-carboxy benzyl chitosan/poly (vinyl alcohol/functionalized zeolite mixed matrix membranes for DMFC applications. Carbohydr Polym 2020; 237:116111. [PMID: 32241453 DOI: 10.1016/j.carbpol.2020.116111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022]
Abstract
The novel N-p-carboxy benzyl chitosan (CBC)/ poly (vinyl alcohol) (PVA) based mixed matrix membranes (MMMs) filled with surface-modified zeolite have been prepared using the dissolution casting technique. The applicability of prepared MMMs for direct methanol fuel cell (DMFC) was investigated in terms of water uptake, methanol permeation, and proton conductivity by changing filler content (10-50 wt. %). The zeolite was modified by silane coupling agent, 3-mercaptopropyltrimethoxysilane (MPTMS). The resultant modified zeolite (MZ) was incorporated into CBC/PVA blend to obtain mixed matrix PEMs. The functional group, structural properties, morphological and topographical investigation of MMMs were examined using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning electron microscopy (SEM) respectively. The prepared MMMs exhibited a remarkable decrease in methanol permeability of 2.3 × 10-7 cm2/s with C-CPMZ50. The maximum value of proton conductivity of 0.0527 Scm-1, was shown by C-CMPZ10. The prepared PEMs also displayed good stability during long term operating time.
Collapse
Affiliation(s)
- Faizah Altaf
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan; School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA; Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| | - Rida Batool
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan; School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA; Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Rohama Gill
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | | | - Matthew Drexler
- School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA
| | - Faisal Alamgir
- School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA
| | - Ghazanfar Abbas
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Aneela Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - Karl I Jacob
- School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Jia T, Shen S, Xiao L, Jin J, Zhao J, Che Q. Constructing multilayered membranes with layer-by-layer self-assembly technique based on graphene oxide for anhydrous proton exchange membranes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109362] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Hariprasad R, Vinothkannan M, Kim AR, Yoo DJ. SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of direct methanol fuel cells. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1660672] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ranganathan Hariprasad
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| | - Mohanraj Vinothkannan
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
- Department of Life Science, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| | - Ae Rhan Kim
- Department of Bioenvironmental Chemistry and R&D Center for CANUTECH, Business Incubation Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
- Department of Life Science, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| |
Collapse
|
15
|
Rambabu G, D Bhat S, Figueiredo FML. Carbon Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells-A Concise Review. NANOMATERIALS 2019; 9:nano9091292. [PMID: 31510023 PMCID: PMC6781041 DOI: 10.3390/nano9091292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022]
Abstract
A membrane electrolyte that restricts the methanol cross-over while retaining proton conductivity is essential for better electrochemical selectivity in direct methanol fuel cells (DMFCs). Extensive research carried out to explore numerous blends and composites for application as polymer electrolyte membranes (PEMs) revealed promising electrochemical selectivity in DMFCs of carbon nanomaterial-based polymer composites. The present review covers important literature on different carbon nanomaterial-based PEMs reported during the last decade. The review emphasises the proton conductivity and methanol permeability of nanocomposite membranes with carbon nanotubes, graphene oxide and fullerene as additives, assessing critically the impact of each type of filler on those properties.
Collapse
Affiliation(s)
- Gutru Rambabu
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Santoshkumar D Bhat
- CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Chennai 600 113, India.
| | - Filipe M L Figueiredo
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Gandhimathi S, Krishnan H, Paradesi D. New series of organic–inorganic polymer nanocomposite membranes for fuel cell applications. HIGH PERFORM POLYM 2019. [DOI: 10.1177/0954008319860886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Flexible organic–inorganic polymer nanocomposite membranes with uniformly distributed metal oxide nanoparticles were prepared using sulfonated poly(ether ether ketone) (SPEEK) as a base material and praseodymium oxide (PSO) as an inorganic additive. The degree of sulfonation of SPEEK was determined by proton nuclear magnetic resonance (NMR) analysis and found to be 60%. The characteristic properties of the polymer nanocomposite membranes were examined by thermogravimetric analysis, X-ray diffraction, ion exchange capacity, water uptake ability, and proton conductivity. The incorporation of metal oxide into the polymer matrix was confirmed by scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray diffraction analyses. The nanocomposite membrane exhibits good thermal stability when compared to that of the pristine membrane and SPEEK with 10 wt% of PSO loading was found to be stable up to 450°C. The assessment of polymer electrolyte membrane is accomplished by fabricating membrane electrode assemblies of pure SPEEK and SP-PSO-10 membranes and the latter produced maximum peak power density of 622 mW cm−2. The constructed SPEEK/PSO nanocomposite membranes offered superior physicochemical properties while applying these materials in an H2-O2 fuel cell.
Collapse
Affiliation(s)
| | | | - Deivanayagam Paradesi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
17
|
Changkhamchom S, Sirivat A. Sulfonated (graphene oxide/poly(ether ketone ether sulfone) (S-GO/S-PEKES) composite proton exchange membrane with high proton conductivity for direct methanol fuel cell. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1587770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S. Changkhamchom
- Conductive and Electroactive Polymers Research Unit, Chulalongkorn University, Bangkok, Thailand
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - A. Sirivat
- Conductive and Electroactive Polymers Research Unit, Chulalongkorn University, Bangkok, Thailand
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Divya K, Rana D, Alwarappan S, Abirami Saraswathi MSS, Nagendran A. Investigating the usefulness of chitosan based proton exchange membranes tailored with exfoliated molybdenum disulfide nanosheets for clean energy applications. Carbohydr Polym 2019; 208:504-512. [DOI: 10.1016/j.carbpol.2018.12.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
|
19
|
A facile synthesis of graphene nanoribbon-quantum dot hybrids and their application for composite electrolyte membrane in direct methanol fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.162] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Zakaria Z, Kamarudin SK, Timmiati SN. Influence of Graphene Oxide on the Ethanol Permeability and Ionic Conductivity of QPVA-Based Membrane in Passive Alkaline Direct Ethanol Fuel Cells. NANOSCALE RESEARCH LETTERS 2019; 14:28. [PMID: 30659414 PMCID: PMC6338673 DOI: 10.1186/s11671-018-2836-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/13/2018] [Indexed: 05/31/2023]
Abstract
Passive alkaline-direct ethanol fuel cells (alkaline-DEFCs) appear to be suitable for producing sustainable energy for portable devices. However, ethanol crossover is a major challenge for passive alkaline-DEFC systems. This study investigated the performance of a crosslinked quaternized poly (vinyl alcohol)/graphene oxide (QPVA/GO) composite membrane to reduce ethanol permeability, leading in enhancement of passive alkaline-DEFC performance. The chemical and physical structure, morphology, ethanol uptake and permeability, ion exchange capacity, water uptake, and ionic conductivity of the composite membranes were characterized and measured to evaluate their applicability in fuel cells. The transport properties of the membrane were affected by GO loading, with an optimal loading of 15 wt.% and doped with 1 M of KOH showing the lowest ethanol permeability (1.49 × 10-7 cm2 s-1 and 3.65 × 10-7 cm2 s-1 at 30 °C and 60 °C, respectively) and the highest ionic conductivity (1.74 × 10-2 S cm-1 and 6.24 × 10-2 S cm-1 at 30 °C and 60 °C, respectively). In the passive alkaline-DEFCs, the maximum power density was 9.1 mW cm-2, which is higher than commercial Nafion 117/KOH (7.68 mW cm-2) at 30 °C with a 2 M ethanol + 2 M KOH solution. For the 60 °C, the maximum power density of composite membrane achieved was 11.4 mW cm-2.
Collapse
Affiliation(s)
- Z. Zakaria
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - S. K. Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - S. N. Timmiati
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
21
|
Chua S, Fang R, Sun Z, Wu M, Gu Z, Wang Y, Hart JN, Sharma N, Li F, Wang DW. Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers. Chemistry 2018; 24:18180-18203. [PMID: 30328219 DOI: 10.1002/chem.201804781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 01/05/2023]
Abstract
Solid polymer electrolytes are of rapidly increasing importance for the research and development of future safe batteries with high energy density. The diversified chemistry and structures of polymers allow the utilization of a wide range of soft structures for all-polymer solid-state electrolytes. With equal importance is the hybrid solid-state electrolytes consisting of both "soft" polymeric structure and "hard" inorganic nanofillers. The recent emergence of the re-discovery of many two-dimensional layered materials has stimulated the booming of advanced research in energy storage fields, such as batteries, supercapacitors, and fuel cells. Of special interest is the mass transport properties of these 2D nanostructures for water, gas, or ions. This review aims at the current progress and prospective development of hybrid polymer-inorganic solid electrolytes based on important 2D materials, including natural clay and synthetic lamellar structures. The ion conduction mechanism and the fabrication, property and device performance of these hybrid solid electrolytes will be discussed.
Collapse
Affiliation(s)
- Stephanie Chua
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Ruopian Fang
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhenhua Sun
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Minjie Wu
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Yuzuo Wang
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Judy N Hart
- School of Materials Science and Engineering, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | - Neeraj Sharma
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Feng Li
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Da-Wei Wang
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Optimization Analysis of the Energy Management Strategy of the New Energy Hybrid 100% Low-Floor Tramcar Using a Genetic Algorithm. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Performance and economic efficiency of the fuel cell (FC)/battery/super capacitor (SC) hybrid 100% low-floor tramcar is mainly determined by its energy management strategy. In this paper, a train traction model was built to calculate the power output and energy consumption properties of the hybrid tramcar. With the purpose of reducing hydrogen consumption, the genetic algorithm was adopted to optimize the original energy management strategy. The results before and after the optimization show that the power requirement of the tramcar can be satisfied in both situations with the fuel cell (FC) module non-stopped. The maximum output power of the FC is reduced from 170 kW to 101.21 kW. As for the SC, a two-parallel connection module is used instead of the three-parallel one, and the power range changes from −125~250 kW to −67~153 kW. Under the original energy management strategy, the battery cannot be used efficiently with less exporting and absorbent power. Its utilization ratio is improved greatly after optimization. In sum, the equivalent total hydrogen consumption is reduced from 3.3469 kg to 2.8354 kg, dropping by more than 15%.
Collapse
|