1
|
Wu Y, Huang J, Guo Z, Yang Q, Xia C, Zheng Z. Preparation of Polymerized High Internal Phase Emulsion Membranes with High Open-Cellular Extent and High Toughness via RAFT Polymerization. Polymers (Basel) 2025; 17:515. [PMID: 40006177 PMCID: PMC11858975 DOI: 10.3390/polym17040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Porous polymer membranes with highly interconnected open-cellular structure and high toughness are crucial for various application fields. Polymerized high internal phase emulsions (polyHIPEs), which usually exist as monoliths, possess the advantages of high porosity and good connectivity. However, it is difficult to prepare membranes due to brittleness and easy pulverization. Copolymerizing acrylate soft monomers can effectively improve the toughness of polyHIPEs, but it is easy to cause emulsion instability and pore collapse. In this paper, stable HIPEs with a high content of butyl acrylate (41.7 mol% to 75 mol% based on monomers) can be obtained by using a composite emulsifier (30 wt.% based on monomers) consisting of Span80/DDBSS (9/2 in molar ratio) and adding 0.12 mol·L-1 CaCl2 according to aqueous phase concentration. On this basis, polyHIPE membranes with high open-cellular extent and high toughness are firstly prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. The addition of the RAFT agent significantly improves the mechanical properties of polyHIPE membranes without affecting open-cellular structure. The toughness of polyHIPE membranes prepared by RAFT polymerization is significantly enhanced compared with conventional free radical polymerization. When the molar ratio of butyl acrylate/styrene/divinylbenzene is 7/4/1, the polyHIPE membrane prepared by RAFT polymerization presents plastic deformation during the tensile test. The toughness modulus reaches 93.04 ± 12.28 kJ·m-3 while the open-cellular extent reaches 92.35%, and it also has excellent thermal stability.
Collapse
Affiliation(s)
- Yulan Wu
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Jie Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zanru Guo
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qian Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenan Zheng
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
2
|
Durgut E, Claeyssens F. Pickering polymerized high internal phase emulsions: Fundamentals to advanced applications. Adv Colloid Interface Sci 2025; 336:103375. [PMID: 39667091 DOI: 10.1016/j.cis.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Pickering-polymerized high internal phase emulsions have attracted attention since their successful first preparation 15 years ago, primarily due to their large pores and potential for functionalization during production. This review elucidates the fundamental principles of Pickering emulsions, Pickering HIPEs, and Pickering PolyHIPEs while comparing them to conventional surfactant-stabilized counterparts. The morphology of Pickering PolyHIPEs, with particular emphasis on methods for achieving interconnected structures, is explored and critically assessed. Lastly, the mechanical properties and diverse applications of these materials are reviewed, highlighting their use as catalytic supports and sorbent materials. The study aims to guide both new and experienced researchers in the field by comprehensively addressing the current potential and challenges of Pickering PolyHIPEs. Once the mystery behind the closed cellular pores of Pickering PolyHIPEs is resolved, these materials are expected to become more popular, particularly in applications where mass transfer is critical, such as tissue engineering.
Collapse
Affiliation(s)
- E Durgut
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkiye; Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom.
| | - F Claeyssens
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom; Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Colorado HA, Yuan W, Meza J, Jaramillo F, Gutierrez-Velasquez EI. Enhancing Thermomechanical Strength and Thermal Stability of Poly(dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications. Polymers (Basel) 2023; 15:4418. [PMID: 38006142 PMCID: PMC10675529 DOI: 10.3390/polym15224418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/26/2023] Open
Abstract
Poly(dicyclopentadiene) (poly-DCPD) is a thermoset with potential for high-performance applications. In this research, epoxy resin was blended with different concentrations of fly ash class F particles at 0.0, 1.0, 10.0, and 50.0 wt.%, aiming to improve its use as a high-volume structural material by decreasing costs and reducing its negative environmental impact through using fly ash particles. A planetary Thinky mixer was used to initially mix the resin with the curing agent, followed by incorporating a Grubbs catalyst. The microstructures were analyzed using scanning electron microscopy (SEM), where particles were found to be homogeneously distributed over the polymer matrix. The thermomechanical behavior was evaluated via curing, compression, dynamic mechanical analysis (DMA), and thermo-gravimetric analysis (TGA). Nanoindentation tests were also conducted. Fly ash was found to decelerate the curing of the resin through the release of calcium ions that enhanced the exothermic reaction.
Collapse
Affiliation(s)
- Henry A. Colorado
- Composites Laboratory, Engineering School, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Wei Yuan
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA;
| | - Juan Meza
- Universidad Nacional de Colombia, Calle 75 No 79A 51, Bloque M17, Medellín 050032, Colombia;
| | - Franklin Jaramillo
- Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia (UdeA), Calle 62 No. 52-59, Medellín 050010, Colombia;
| | | |
Collapse
|
4
|
Furmidge R, Jackson CE, Velázquez de la Paz MF, Workman VL, Green NH, Reilly GC, Hearnden V, Claeyssens F. Surfactant-free gelatin-stabilised biodegradable polymerised high internal phase emulsions with macroporous structures. Front Chem 2023; 11:1236944. [PMID: 37681209 PMCID: PMC10481965 DOI: 10.3389/fchem.2023.1236944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
High internal phase emulsion (HIPE) templating is a well-established method for the generation of polymeric materials with high porosity (>74%) and degree of interconnectivity. The porosity and pore size can be altered by adjusting parameters during emulsification, which affects the properties of the resulting porous structure. However, there remain challenges for the fabrication of polyHIPEs, including typically small pore sizes (∼20-50 μm) and the use of surfactants, which can limit their use in biological applications. Here, we present the use of gelatin, a natural polymer, during the formation of polyHIPE structures, through the use of two biodegradable polymers, polycaprolactone-methacrylate (PCL-M) and polyglycerol sebacate-methacrylate (PGS-M). When gelatin is used as the internal phase, it is capable of stabilising emulsions without the need for an additional surfactant. Furthermore, by changing the concentration of gelatin within the internal phase, the pore size of the resulting polyHIPE can be tuned. 5% gelatin solution resulted in the largest mean pore size, increasing from 53 μm to 80 μm and 28 μm to 94 µm for PCL-M and PGS-M respectively. In addition, the inclusion of gelatin further increased the mechanical properties of the polyHIPEs and increased the period an emulsion could be stored before polymerisation. Our results demonstrate the potential to use gelatin for the fabrication of surfactant-free polyHIPEs with macroporous structures, with potential applications in tissue engineering, environmental and agricultural industries.
Collapse
Affiliation(s)
- Rachel Furmidge
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Caitlin E. Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - María Fernanda Velázquez de la Paz
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Victoria L. Workman
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nicola H. Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Vanessa Hearnden
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Muratspahić E, Schöffmann J, Jiang Q, Bismarck A. Poly(acrylamide- co-styrene): A Macrosurfactant for Oil/Water Emulsion Templating toward Robust Macroporous Hydrogels. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Emina Muratspahić
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Doctoral College Advanced Functional Materials, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Jana Schöffmann
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Qixiang Jiang
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Alexander Bismarck
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
6
|
Lin R, Yin Z, Sun Y, Zhang S. Hierarchically porous polyHIPEs fabricated via ex-situ swelling strategy towards supports for noble-metal Ag nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
McKenzie TJ, Smail S, Rost K, Rishi K, Beaucage G, Ayres N. Multi-layered polymerized high internal phase emulsions with controllable porosity and strong interfaces. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Schallert V, Slugovc C. A Natural Rubber Waste Derived Surfactant for High Internal Phase Emulsion Templating of Poly(Dicyclopentadiene). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viktor Schallert
- Institute for Chemistry and Technology of Materials Graz University of Technology Stremayrgasse 9 Graz A‐8010 Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization Stremayrgasse 9 Graz A‐8010 Austria
| | - Christian Slugovc
- Institute for Chemistry and Technology of Materials Graz University of Technology Stremayrgasse 9 Graz A‐8010 Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization Stremayrgasse 9 Graz A‐8010 Austria
| |
Collapse
|
9
|
Kishan A, Buie T, Whitfield-Cargile C, Jose A, Bryan L, Cohen N, Cosgriff-Hernandez E. In vivo performance of a bilayer wrap to prevent abdominal adhesions. Acta Biomater 2020; 115:116-126. [PMID: 32846239 DOI: 10.1016/j.actbio.2020.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
There is a high prevalence of intra-abdominal adhesions following bowel resection, which can result in chronic pain, bowel obstruction, and morbidity. Although commercial adhesion barriers have been widely utilized for colonic resections, these barriers do not prevent anastomotic leakage resulting from reduced healing of the anastomosis, which can result in long-term health problems. To address this limitation, we have developed an adhesive bilayer wrap with selective bioactivity to simultaneously prevent intra-abdominal adhesion formation and promote anastomotic healing. Reactive electrospinning was used to generate a crosslinked gelatin mesh to serve as a cell-instructive substrate to improve anastomotic healing. A coating of poly(ethylene glycol) (PEG) foam was applied to the bioactive mesh to generate an antifouling layer and prevent intra-abdominal adhesions. After in vitro confirmation of selective bioactivity, the composite wrap was compared after 2 weeks to a commercial product (InterceedⓇ) in an in vivo rat colonic abrasion model for prevention of intra-abdominal adhesions. The composite bilayer wrap was able to prevent intra-abdominal adhesions when clinical placement was maintained. The composite bilayer wrap was further modified to include tissue adhesive properties for improved efficacy. Preliminary studies indicated that the adhesive composite bilayer wrap maintained a maximum shear strength comparable to InterceedⓇ and greater than fibrin glue. Overall, this work resulted in an initial proof-of-concept device that was shown to effectively prevent intra-abdominal adhesion formation in vivo. The composite bilayer wrap studied here could lead to an improved technology for improved healing of intestinal anastomoses.
Collapse
Affiliation(s)
- Alysha Kishan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 United States.
| | - Taneidra Buie
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 United States.
| | - Canaan Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843 United States.
| | - Anupriya Jose
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 United States.
| | - Laura Bryan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843 United States.
| | - Noah Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843 United States.
| | | |
Collapse
|
10
|
Luo J, Huang Z, Liu L, Wang H, Ruan G, Zhao C, Du F. Recent advances in separation applications of polymerized high internal phase emulsions. J Sep Sci 2020; 44:169-187. [PMID: 32845083 DOI: 10.1002/jssc.202000612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Zhujun Huang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Linqi Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
11
|
Aldemir Dikici B, Claeyssens F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front Bioeng Biotechnol 2020; 8:875. [PMID: 32903473 PMCID: PMC7435020 DOI: 10.3389/fbioe.2020.00875] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Vakalopoulou E, Borisov SM, Slugovc C. Fast Oxygen Scavenging of Macroporous Poly(Norbornadiene) Prepared by Ring‐Opening Metathesis Polymerization. Macromol Rapid Commun 2020; 41:e1900581. [DOI: 10.1002/marc.201900581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/07/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Efthymia Vakalopoulou
- Institute for Chemistry and Technology of MaterialsGraz University of Technology Stremayrgasse 9 A 8010 Graz Austria
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food ChemistryGraz University of Technology Stremayrgasse 9 A 8010 Graz Austria
| | - Christian Slugovc
- Institute for Chemistry and Technology of MaterialsGraz University of Technology Stremayrgasse 9 A 8010 Graz Austria
| |
Collapse
|
13
|
Vakalopoulou E, Slugovc C. The Effects of Enhancing the Crosslinking Degree in High Internal Phase Emulsion Templated Poly(dicyclopentadiene). MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Efthymia Vakalopoulou
- Institute for Chemistry and Technology of MaterialsGraz University of Technology Stremayrgasse 9 A 8010 Graz Austria
| | - Christian Slugovc
- Institute for Chemistry and Technology of MaterialsGraz University of Technology Stremayrgasse 9 A 8010 Graz Austria
| |
Collapse
|
14
|
Althubeiti KM, Horozov TS. Efficient preparation of macroporous poly(methyl methacrylate) materials from high internal phase emulsion templates. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Drozdov AD, Claville Christiansen J. The effect of porosity on elastic moduli of polymer foams. J Appl Polym Sci 2019. [DOI: 10.1002/app.48449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- A. D. Drozdov
- Department of Materials and ProductionAalborg University Fibigerstraede 16, Aalborg 9220 Denmark
| | - J. Claville Christiansen
- Department of Materials and ProductionAalborg University Fibigerstraede 16, Aalborg 9220 Denmark
| |
Collapse
|
16
|
Aldemir Dikici B, Sherborne C, Reilly GC, Claeyssens F. Emulsion templated scaffolds manufactured from photocurable polycaprolactone. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|