1
|
Wu Y, Chen Z, Lu C, Hu C, Qu J. Pulsatile Ion Transport in Nanofiltration Membranes Coupled with Electrically Tunable Pore and Hydroxyl Electrostatic Interactions. ACS NANO 2025; 19:4993-5004. [PMID: 39848794 DOI: 10.1021/acsnano.4c17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pulsatile ion transport facilitates the adjusted transfer of substances, meeting the requirements for the gradient and timed separation of multiple components in membrane processes. Responsive nanofiltration membranes are thus currently receiving widespread attention but face limitations due to their narrow performance adjustment range. Herein, hydroxyl functional groups were introduced into electrically responsive nanofiltration membranes to broaden the adjustment range of separation performance through a combination of pore size sieving and functional group interactions, resulting in a greater change in rejection and flux compared to the original membrane. Membrane pore size is regulated by polypyrrole volume changes and becomes more variable when the cation's hydration radius is smaller. Although the hydroxyl group did not affect the charge transfer or volume change capacity of polypyrrole, it enhanced ion-pore interactions during ion transport, which was particularly pronounced in smaller nanochannels. The size effect of functional group interactions more strongly enhances the transmembrane energy barrier in the reduced state compared with the oxidized state, ultimately resulting in greater modulation of performance. This coupling strategy provides insights into the design of responsive membranes, offering the potential to achieve gradient separation of various solutes.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Minisy IM, Taboubi O, Hromádková J, Bober P. Aerogels of Polypyrrole/Tannic Acid with Nanofibrillated Cellulose for the Removal of Hexavalent Chromium Ions. Gels 2024; 10:415. [PMID: 39057439 PMCID: PMC11275629 DOI: 10.3390/gels10070415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The preparation of conducting polymer aerogels is an effective strategy to produce innovative materials with enhanced physicochemical properties. Herein, polypyrrole (PPy) aerogels were oxidatively prepared in the presence of tannic acid (TA) with different concentrations (2.5, 5, and 10% mole ratio to pyrrole monomer) under freezing conditions. Nanofibrillated cellulose (NFC) was added during the PPy/TA synthesis to enhance mechanical stability. The effect of TA concentration on the aerogels' morphology, conductivity, thermal stability, and adsorption capacity was investigated. The conductivity of 9.6 ± 1.7 S cm-1 was achieved for PPy/TA prepared with 2.5% TA, which decreased to 0.07 ± 0.01 S cm-1 when 10% TA was used. PPy/TA aerogels have shown high efficacy in removing Cr(VI) ions from aqueous solutions. Adsorption experiments revealed that all the aerogels follow pseudo-second-order kinetics. PPy/TA prepared with NFC has a maximum adsorption capacity of 549.5 mg g-1.
Collapse
Affiliation(s)
- Islam M. Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | | | | | | |
Collapse
|
3
|
Mahmood J, Arsalani N, Naghash-Hamed S, Hanif Z, Geckeler KE. Preparation and characterization of hybrid polypyrrole nanoparticles as a conducting polymer with controllable size. Sci Rep 2024; 14:11653. [PMID: 38773190 PMCID: PMC11109234 DOI: 10.1038/s41598-024-61587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Hybrid polypyrrole (PPy) nanoparticles were prepared using a low-temperature oxidative polymerization process in an acidic solution with polyethyleneimine (PEI) as a template and amine source. The results showed that the nanoparticles have an amorphous structure in the X-ray diffractogram and exhibited good dispersibility in water, uniform size, and a specific conductivity ranging from 0.1 to 6.9 S/cm. The particle size could be tuned from 85 to 300 nm by varying the reactant concentration. Undoping the samples with sodium hydroxide (NaOH) solution altered the optical absorption properties and surface roughness of the particles. However, it did not affect the particle size. The nanoparticles also exhibited optical sensing properties based on their UV-vis absorption changes with the pH. Moreover, nanoparticles could have potential applications in gene delivery and bio-adsorption for contaminant removal. This work demonstrates a simple and effective method for preparing hybrid polypyrrole nanoparticles with controllable size, dispersibility, and conductivity for various nanotechnology, biotechnology, and environmental engineering purposes.
Collapse
Affiliation(s)
- Javeed Mahmood
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Samin Naghash-Hamed
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Zahid Hanif
- School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan, Chungnam, 31253, South Korea
- Advanced Technology Research Centre, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea
| | - Kurt E Geckeler
- Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), Gwangju, 500712, South Korea.
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500712, South Korea.
| |
Collapse
|
4
|
Sardar R, Das S, Banik R, Bhunia S, Ghosh S. Exploration of the impact of graphene oxide, acetylenic gemini, and CTAT on the photophysical and aggregation properties of dipolar coumarin 153. Phys Chem Chem Phys 2024; 26:8900-8918. [PMID: 38426553 DOI: 10.1039/d3cp05361j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Advanced spectroscopic techniques have been utilized to study the interaction between the laser dye coumarin 153 (C153) and graphene oxide (GO) nanoparticles. GO was synthesized using a modified Hummers' method and characterized by UV-vis spectroscopy, Raman laser spectroscopy, FTIR-ATR spectroscopy, FESEM, HR-TEM, and XRD techniques. The GO@C153 composite was formed by mixing two aqueous solutions of GO and C153 due to their strong interaction through stacking and hydrophobic interactions. In this case, GO acts as an effective fluorescence quencher for C153 molecules, which undergo H-type aggregation in the presence of GO. The Stern-Volmer equation and time-dependent fluorescence studies were utilized to analyse the mechanism of fluorescence quenching. According to the findings, both static and dynamic quenching processes are responsible for the reduction in fluorescence intensity. The effect of surfactants (both cetyltrimethylammonium p-toluenesulfonate (CTAT) and synthesized N,N'-dihexadecyl-N,N,N',N'-tetramethyl-N,N'-but-2-ynediyl-di-ammonium chloride (16-4-16)) on the aggregation and photophysical properties of the dye was investigated using surface tensiometry, conductometry, UV-vis absorption spectroscopy, steady-state fluorescence measurements, DLS, and time-dependent fluorescence spectroscopy. Surfactants change the microenvironment of the C153 dye, leading to spectrum shifting and a higher quantum yield, which causes a rapid rise in fluorescence intensity in the micellar medium. It has been noted that in a micellar medium rather than in an aqueous one, the luminous intramolecular charge transfer (ICT) state of C153 stabilises. Lastly, we investigated the photophysical behavior of the GO-C153-micelle ternary system and discovered that, in the presence of a micellar medium, the quenched and blue-shifted (H-type aggregation) fluorescence peak of C153 (in the presence of GO) began to intensify once more. The main goal of this work is to create an effective and fairly cost powerful fluorescence sensor. Additionally, the ternary system (GO-C153-micelle) analytical idea can be employed to identify the onset of micelle formation. In wastewater treatment analysis, the GO-C153-surfactant ternary system concept can also be used to regenerate the adsorbent (in this case, GO) from dye molecules by allowing the dye molecules to exit the adsorbent and enter the micellar medium.
Collapse
Affiliation(s)
- Raju Sardar
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sourav Das
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Rajesh Banik
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sayani Bhunia
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Soumen Ghosh
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
5
|
Tumacder DV, Minisy IM, Taboubi O, Bober P. Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors. Polymers (Basel) 2023; 15:4140. [PMID: 37896384 PMCID: PMC10610487 DOI: 10.3390/polym15204140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The polymerization of pyrrole in the frozen state with the presence of organic dyes (methyl orange (MO) and Acid Blue 25 (AB)) has proven to produce polypyrrole (PPy) nanostructures. Herein, we explore the electrochemical properties of PPy prepared under frozen-state conditions (-24 °C) with and without the presence of organic dyes. The electroactivity of PPy prepared with MO and AB significantly increased in all electrolytic media with a capacitance higher than this of the PPy prepared at room temperature. The highest capacitance (1914 F g-1) was obtained for PPy-MO in 0.2 M HCl solution. The impedance spectra of PPy showed a decrease in charge transfer resistance when the dyes were present. This indicates a conductivity increase of PPy. Improved electrochemical stability was observed for PPy, PPy-MO, and PPy-AB prepared at -24 °C, wherein a steady gain of capacitance was maintained during 5000 potential cycling. In addition, a PPy-based supercapacitor device was fabricated to demonstrate the energy storage characteristics of PPy, where it showed good capacitive behavior and stability. Overall, frozen-state polymerized PPy posed an impressive capacitive performance for flexible supercapacitors.
Collapse
Affiliation(s)
- Doebner Von Tumacder
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
- Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Islam M. Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| |
Collapse
|
6
|
Minisy IM, Taboubi O, Hromádková J. One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol. Polymers (Basel) 2023; 15:polym15102366. [PMID: 37242941 DOI: 10.3390/polym15102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, silver nitrate was used as an oxidant to prepare polyaniline, polypyrrole, and poly(3,4-ethylene dioxythiophene)/silver composites through a simultaneous oxidation/reduction process. In addition, p-phenylenediamine was added with 1 mole% relative to the concentrations of the monomers to accelerate the polymerization reaction. The prepared conducting polymer/silver composites were characterized by scanning and transmission electron microscopies to study their morphologies; Fourier-transform infrared and Raman spectroscopies to confirm their molecular structures; and thermogravimetric analysis (TGA) to study their thermal stabilities. The silver content in the composites was estimated by energy-dispersive X-ray spectroscopy, ash analysis, and TGA. The conducting polymer/silver composites were utilized for the remediation of water pollutants through catalytic reduction. Hexavalent chromium ions (Cr(VI)) were photocatalytically reduced to trivalent chromium ions, and p-nitrophenol was catalytically reduced to p-aminophenol. The catalytic reduction reactions were found to follow the first-order kinetic model. Among the prepared composites, polyaniline/silver composite has shown the highest activity for the photocatalytic reduction of Cr(VI) ions with an apparent rate constant of 0.226 min-1 and efficiency of 100% within 20 min. Additionally, poly(3,4-ethylene dioxythiophene)/silver composite showed the highest catalytic activity towards the reduction of p-nitrophenol with an apparent rate constant of 0.445 min-1 and efficiency of 99.8% within 12 min.
Collapse
Affiliation(s)
- Islam M Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| |
Collapse
|
7
|
Gai S, Wang X, Zhang R, Zeng K, Miao S, Wu Y, Wang B. A controllably fabricated polypyrrole nanorods network by doping a tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt for enhanced ammonia sensing at room temperature. RSC Adv 2023; 13:13725-13734. [PMID: 37152582 PMCID: PMC10158350 DOI: 10.1039/d3ra00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The morphology adjustment and functional doping optimization of polypyrrole (PPy) are of great significance in improving its gas sensing performance. Here, the PPy-0.5TcCoPc nanorods with a uniform dispersed 3-D network were prepared using one-step in situ polymerization using the electrostatic interaction between dopant counterion substituents in tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt (TcCoPcTs) with larger space structure and pyrrole (Py) molecules, in which TcCoPcTs is not only used as a dopant molecule crosslinking PPy chains to obtain a 3-D network, thus improving the conductivity, but also as a sensor accelerator to improve the gas-sensing performance. The resulting PPy-TcCoPc hybrid exhibits superior NH3-sensing properties than PPy and tetra-β-carboxylate cobalt phthalocyanine (TcCoPc) under the same test conditions, especially the PPy-0.5TcCoPc sensor shows ultrafast response/recovery time to 50 ppm NH3 (8.1 s/370.8 s), low detection limit of 8.1 ppb and excellent gas selectivity at room temperature (20 °C). Besides, the PPy-0.5TcCoPc sensor also maintains superior response (49.3% to 50 ppm NH3), humidity resistance and conspicuous stability over 45 days. The excellent NH3-sensing performance of the PPy-0.5TcCoPc hybrid arises from the excellent gas selectivity of TcCoPc, the remarkable response mechanism between PPy and NH3, the high electrical conductivity, abundant active sites and good electron transport ability of the unique 3-D network with large specific surface area. The morphology regulation and functional doping optimization strategy of TcCoPcTs doped PPy broaden the research direction of ideal gas sensor materials.
Collapse
Affiliation(s)
- Shijie Gai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Xiaolin Wang
- School of Material and Chemical Engineering, Heilongjiang Institute of Technology Harbin 150050 P. R. China
| | - Runze Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Kun Zeng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Shoulei Miao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yiqun Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences P.O. Box 800216 Shanghai 201800 China
| | - Bin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
8
|
Gamboa J, Paulo-Mirasol S, Estrany F, Torras J. Recent Progress in Biomedical Sensors Based on Conducting Polymer Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:1720-1741. [PMID: 37115912 DOI: 10.1021/acsabm.3c00139] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biosensors are increasingly taking a more active role in health science. The current needs for the constant monitoring of biomedical signals, as well as the growing spending on public health, make it necessary to search for materials with a combination of properties such as biocompatibility, electroactivity, resorption, and high selectivity to certain bioanalytes. Conducting polymer hydrogels seem to be a very promising materials, since they present many of the necessary properties to be used as biosensors. Furthermore, their properties can be shaped and enhanced by designing conductive polymer hydrogel-based composites with more specific functionalities depending on the end application. This work will review the recent state of the art of different biological hydrogels for biosensor applications, discuss the properties of the different components alone and in combination, and reveal their high potential as candidate materials in the fabrication of all-organic diagnostic, wearable, and implantable sensor devices.
Collapse
Affiliation(s)
- Jillian Gamboa
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Sofia Paulo-Mirasol
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Juan Torras
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| |
Collapse
|
9
|
Milakin KA, Taboubi O, Acharya U, Lhotka M, Pokorný V, Konefał M, Kočková O, Hromádková J, Hodan J, Bober P. Polypyrrole-Barium Ferrite Magnetic Cryogels for Water Purification. Gels 2023; 9:gels9020092. [PMID: 36826262 PMCID: PMC9957020 DOI: 10.3390/gels9020092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Magnetic polypyrrole-gelatin-barium ferrite (PPy-G-BaFe) cryogels/aerogels were synthesized by one-step oxidative cryopolymerization of pyrrole in the presence of various fractions of barium ferrite (BaFe) nanoparticles, dispersed in aqueous gelatin solution. The successful incorporation of BaFe into the composites was confirmed by elemental analysis and scanning electron microscopy paired with an energy-dispersive X-ray detector. The maximum achieved content of BaFe in the resulting material was 3.9 wt%. The aerogels with incorporated BaFe had significantly higher specific surface area and conductivity, reaching 19.3 m2 g-1 and 4 × 10-4 S cm-1, respectively, compared to PPy-G aerogel, prepared in the absence of BaFe (7.3 m2 g-1 and 1 × 10-5 S cm-1). The model adsorption experiment using an anionic dye, Reactive Black 5, showed that magnetic PPy-G-BaFe aerogel, prepared at 10 wt% BaFe fraction, had significantly higher adsorption rate and higher adsorption capacity, compared to PPy-G (dye removal fraction 99.6% and 89.1%, respectively, after 23 h). Therefore, the prepared PPy-G-BaFe aerogels are attractive adsorbents for water purification due to their enhanced adsorption performance and the possibility of facilitated separation from solution by a magnetic field.
Collapse
Affiliation(s)
- Konstantin A. Milakin
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Udit Acharya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Miloslav Lhotka
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Olga Kočková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiří Hodan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
10
|
Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers (Basel) 2022; 14:polym14235139. [PMID: 36501534 PMCID: PMC9738686 DOI: 10.3390/polym14235139] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.
Collapse
|
11
|
Adsorption of Cr(VI) in aqueous solution by polypyrrole nanotube and polypyrrole nanoparticle; Kinetics, isotherm equilibrium, and thermodynamics. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers (Basel) 2022; 14:polym14183730. [PMID: 36145876 PMCID: PMC9504310 DOI: 10.3390/polym14183730] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Flexible sensing devices have attracted significant attention for various applications, such as medical devices, environmental monitoring, and healthcare. Numerous materials have been used to fabricate flexible sensing devices and improve their sensing performance in terms of their electrical and mechanical properties. Among the studied materials, conductive polymers are promising candidates for next-generation flexible, stretchable, and wearable electronic devices because of their outstanding characteristics, such as flexibility, light weight, and non-toxicity. Understanding the interesting properties of conductive polymers and the solution-based deposition processes and patterning technologies used for conductive polymer device fabrication is necessary to develop appropriate and highly effective flexible sensors. The present review provides scientific evidence for promising strategies for fabricating conductive polymer-based flexible sensors. Specifically, the outstanding nature of the structures, conductivity, and synthesis methods of some of the main conductive polymers are discussed. Furthermore, conventional and innovative technologies for preparing conductive polymer thin films in flexible sensors are identified and evaluated, as are the potential applications of these sensors in environmental and human health monitoring.
Collapse
|
13
|
Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, Anthopoulos TD. Doping Approaches for Organic Semiconductors. Chem Rev 2021; 122:4420-4492. [PMID: 34793134 DOI: 10.1021/acs.chemrev.1c00581] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
Collapse
Affiliation(s)
- Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Aniruddha Basu
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Jian Liu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Osnat Zapata-Arteaga
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ross Warren
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Yuliar Firdaus
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.,Research Center for Electronics and Telecommunication, Indonesian Institute of Science, Jalan Sangkuriang Komplek LIPI Building 20 level 4, Bandung 40135, Indonesia
| | - Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Mariano Campoy-Quiles
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Norbert Koch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekulé-Strasse 5, 12489 Berlin, Germany.,Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens GR-15780, Greece
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| |
Collapse
|
14
|
Von Tumacder D, Morávková Z, Minisy IM, Hromádková J, Bober P. Electropolymerized polypyrrole/safranin-O films: Capacitance enhancement. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
|
16
|
de Aguiar MF, Leal ANR, de Melo CP, Alves KGB. Polypyrrole-coated electrospun polystyrene films as humidity sensors. Talanta 2021; 234:122636. [PMID: 34364445 DOI: 10.1016/j.talanta.2021.122636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023]
Abstract
We report the preparation of flexible polystyrene/polypyrrole (PS/PPy) mats and their successful use as a resistive humidity sensor. These composite membranes were prepared by first obtaining PS films through the electrospinning technique, and then incorporating PPy chains by an in situ chemical polymerization of the pyrrole monomer. The PS fibers were homogeneously distributed, with diameters that obeyed a normal distribution with an average value of (1.04 ± 0.12) μm. The deposition of conducting PPy chains on the surface of the PS fibers was confirmed after characterizing the PS/PPy mats by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), contact angle measurements, and electrochemical impedance spectroscopy (EIS). When used as humidity sensors, the PS/PPy mats exhibited a sensor response of 128.6%, with fast response ((54.9 ± 3.5)s) and recovery times ((76.8 ± 11.1)s), and stable response under different humidity conditions over several days. These performance characteristics compare favorably to those of previous resistive humidity sensors discussed in the literature.
Collapse
Affiliation(s)
- Maurício F de Aguiar
- Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Andressa N R Leal
- Programa de Pós-Graduação Em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Celso P de Melo
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Kleber G B Alves
- Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
17
|
Miksa B, Steinke U, Trzeciak K, Sniechowska J, Rozanski A. Thermostable Fluorescent Capsules with the Cross‐Linked Heterocyclic Polymer Shell from Poly(pyrrole‐phenosafranin). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Beata Miksa
- Department of Structural Chemistry Centre of Molecular and Macromolecular Studies Polish Academy of Science Sienkiewicza 112 Lodz 90–363 Poland
| | - Urszula Steinke
- Department of Structural Chemistry Centre of Molecular and Macromolecular Studies Polish Academy of Science Sienkiewicza 112 Lodz 90–363 Poland
| | - Katarzyna Trzeciak
- Department of Structural Chemistry Centre of Molecular and Macromolecular Studies Polish Academy of Science Sienkiewicza 112 Lodz 90–363 Poland
| | - Justyna Sniechowska
- Department of Structural Chemistry Centre of Molecular and Macromolecular Studies Polish Academy of Science Sienkiewicza 112 Lodz 90–363 Poland
| | - Artur Rozanski
- Department of Structural Chemistry Centre of Molecular and Macromolecular Studies Polish Academy of Science Sienkiewicza 112 Lodz 90–363 Poland
| |
Collapse
|
18
|
Long-term electrochemical stability of polyaniline- and polypyrrole-based hydrogels. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01519-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Pang AL, Arsad A, Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ai Ling Pang
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Agus Arsad
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohsen Ahmadipour
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Penang Malaysia
| |
Collapse
|
20
|
Minisy IM, Bober P, Šeděnková I, Stejskal J. Methyl red dye in the tuning of polypyrrole conductivity. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Minisy IM, Bober P. Frozen-State Polymerization as a Tool in Conductivity Enhancement of Polypyrrole. Macromol Rapid Commun 2020; 41:e2000364. [PMID: 32776419 DOI: 10.1002/marc.202000364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Indexed: 01/01/2023]
Abstract
Polypyrrole (PPy) is oxidatively polymerized in the frozen state at -24 °C in the presence of various organic dyes as morphology guiding agents in order to form homogeneous 1D PPy nanoforms. The freezing polymerization of pyrrole has a significant influence on the electrical conductivity and thermal stability but negligible influence on the yield compared to widely used room temperature polymerization.
Collapse
Affiliation(s)
- Islam M Minisy
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic.,Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic
| |
Collapse
|
22
|
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00982-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|