1
|
Chen Z, Zhang C. Free Radical Copolymerization of N-Isopropylacrylamide and 2,3-Dihydroxypropyl Methacrylate: Reaction Kinetics and Characterizations. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1614. [PMID: 40271841 PMCID: PMC11990630 DOI: 10.3390/ma18071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) undergoes a sharp phase transition in aqueous solutions at around 32 °C, which is called the lower critical solution temperature; the tuning of the LCST of PNIPAm could be achieved by the copolymerization of N-isopropylacrylamide (NIPAm) with other hydrophilic/hydrophobic monomers to regulate the solvation state of PNIPAm and meet the requirements of possible applications. Herein, a hydrophilic monomer, 2,3-dihydroxypropyl methacrylate (DHPMA), w introduced to regulate the phase transition behavior of PNIPAm via free radical copolymerization. A series of poly(N-isopropylacrylamide-co-2,3-dihydroxypropyl methacrylate) (P(NIPAm-co-DHPMA)) was synthesized and characterized. The reaction kinetics were investigated in detail. In this copolymerization, the reactivity ratios of DHPMA and NIPAm were found to be 3.09 and 0.11, suggesting that DHPMA had greater preference for homopolymerization than for copolymerization, while NIPAm had greater preference for copolymerization than for homopolymerization. The phase transition temperature of P(NIPAm-co-DHPMA) copolymers varied from 31 to 42 °C by controlling the content of DHPMA in the copolymers from 0 to 58 mol%. Finally, the good cytocompatibility of P(NIPAm-co-DHPMA) was confirmed. These results provide insights into designing thermo-responsive polymers with suitable responsive behaviors that meet the requirements of different applications.
Collapse
Affiliation(s)
- Zhishu Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China;
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Shenzhen 518107, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China;
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Tuan HNA, Phan BTC, Giang HN, Nguyen GT, Le TDH, Phuong H. Impact of Modifications from Potassium Hydroxide on Porous Semi-IPN Hydrogel Properties and Its Application in Cultivation. Polymers (Basel) 2024; 16:1195. [PMID: 38732665 PMCID: PMC11085908 DOI: 10.3390/polym16091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study synthesized and modified a semi-interpenetrating polymer network hydrogel from polyacrylamide, N,N'-dimethylacrylamide, and maleic acid in a potassium hydroxide solution. The chemical composition, interior morphology, thermal properties, mechanical characteristics, and swelling behaviors of the initial hydrogel (SH) and modified hydrogel (SB) in water, salt solutions, and buffer solutions were investigated. Hydrogels were used as phosphate fertilizer (PF) carriers and applied in farming techniques by evaluating their impact on soil properties and the growth of mustard greens. Fourier-transform infrared spectra confirmed the chemical composition of SH, SB, and PF-adsorbed hydrogels. Scanning electron microscopy images revealed that modification increased the largest pore size from 817 to 1513 µm for SH and SB hydrogels, respectively. After modification, the hydrogels had positive changes in the swelling ratio, swelling kinetics, thermal properties, mechanical and rheological properties, PF absorption, and PF release. The modification also increased the maximum amount of PF loaded into the hydrogel from 710.8 mg/g to 770.9 mg/g, while the maximum % release of PF slightly increased from 84.42% to 85.80%. In addition, to evaluate the PF release mechanism and the factors that influence this process, four kinetic models were applied to confirm the best-fit model, which included zero-order, first-order, Higuchi, and Korsmeyer-Peppas. In addition, after six cycles of absorption and release in the soil, the hydrogels retained their original shapes, causing no alkalinization or acidification. At the same time, the moisture content was higher as SB was used. Finally, modifying the hydrogel increased the mustard greens' lifespan from 20 to 32 days. These results showed the potential applications of modified semi-IPN hydrogel materials in cultivation.
Collapse
Affiliation(s)
- Huynh Nguyen Anh Tuan
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Bui Thi Cam Phan
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Ha Ngoc Giang
- Faculty of Chemical Technology, Ho Chi Minh City University of Industry and Trade, No. 140, Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 72009, Vietnam;
| | - Giang Tien Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Thi Duy Hanh Le
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Ho Phuong
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| |
Collapse
|
3
|
Muchlis AMG, Yang C, Tsai YT, Ummartyotin S, Lin CC. Multiresponsive Self-Healing Lanthanide Fluorescent Hydrogel for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46085-46097. [PMID: 37732796 DOI: 10.1021/acsami.3c10662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Lanthanide organometallic complexes exhibit strong luminescence characteristics, owing to their antenna effects. The f-d energy level transition causes this phenomenon, which occurs when ligands and the external electrons of lanthanide metals coordinate. Based on this phenomenon, we used two lanthanide metals, europium (Eu) and terbium (Tb), in the present study as the metal center for iminodiacetic acid ligands. Further, we developed the resulting fluorescent organometallic complex as a smart material. The ligand-metal bond in the material functioned as a metal chelating agent and a cross-linking agent in a dynamically coordinated form, thereby prompting the material to self-heal. Temperature-sensitive poly-N-isopropylacrylamide was incorporated into the material as the polymer backbone. Afterward, we combined it with water-soluble poly(vinyl alcohol) and an additional ligand from poly(acrylic acid) to fabricate a high-performance hydrogel composite material. The shrinkage and expansion of the polymer form a grid between the materials. Because of the different coordination stabilities of Eu3+ and Tb3+, the corresponding material exhibits environmental responses toward excitation wavelength, temperature, and pH, thus generating different colors. When used in fabrics, the cross-linking mechanism of the material effectively looped the material between fabric fibers; furthermore, the temperature sensitivity of the polymer adjusted the size of pores between fabric fibers. At relatively higher temperatures (>32 °C), the polymer structure shrank, fiber pores expanded, and air permeability improved. Thus, this material appears to be promising for use in smart textiles.
Collapse
Affiliation(s)
| | - Ching Yang
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106334, Taiwan
| | - Yi-Ting Tsai
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chun Che Lin
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106334, Taiwan
| |
Collapse
|
4
|
A reliable method by utilizing thermo-responsive palladium nanocomposite for fabricating Nickel coating on nylon 6 fabrics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Temperature triggered aggregation toward nanoparticles formation from tri-arm poly(HEAAm-b-NIPAAm) in aqueous solutions. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Zheng K, Chen S, Zhan H, Situ J, Chen Z, Wang X, Zhang D, Zhang L. HRP-conjugated thermoresponsive copolymer as a nanoreactor for aqueous polymerization of phenols. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Huh YS, Venkatesu P. Interactions between a biomedical thermoresponsive polymer and imidazolium-based ionic liquids: A comprehensive biophysical investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. MATERIALS HORIZONS 2022; 9:164-193. [PMID: 34549764 PMCID: PMC8757657 DOI: 10.1039/d1mh01091c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thermoresponsive supramolecular assemblies have been extensively explored in diverse formats, from injectable hydrogels to nanoscale carriers, for a variety of applications including drug delivery, tissue engineering and thermo-controlled catalysis. Understanding the molecular bases behind thermal sensitivity of materials is fundamentally important for the rational design of assemblies with optimal combination of properties and predictable tunability for specific applications. In this review, we summarize the recent advances in this area with a specific focus on the parameters and factors that influence thermoresponsive properties of soft materials. We summarize and analyze the effects of structures and architectures of molecules, hydrophilic and lipophilic balance, concentration, components and external additives upon the thermoresponsiveness of the corresponding molecular assemblies.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | - Stephanie P Le
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Centre for Bioactive Delivery, Institute for Applied Life Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
9
|
Liu H, Liang Z, Wang S, Ma N, Chen S. Synthesis and characterization of a thermosensitive solid amine biomass adsorbent for carbon dioxide adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112722. [PMID: 34010727 DOI: 10.1016/j.jenvman.2021.112722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
A thermosensitive solid amine fiber SF-AM-co-NIPAM-HBP-NH2 was synthesized by grafting temperature-sensitive monomer N-isopropyl acrylamide (NIPAM) as well as acrylamide (AM) onto the surface of substrate sisal fiber, and further aminating with hyperbranched amine. FTIR, 13C NMR, SEM, EA and TGA were used to confirm the structure and chemical properties of the grafted fibers. Swelling ratio and CO2 adsorption-desorption experiment were investigated to verify the thermo-sensitivity of the grafted fibers and their CO2 adsorption-desorption behavior. Compared with conventional solid amine adsorbents regenerated around 140 °C, SF-AM-co-NIPAM-HBP-NH2 (1:1) with NIPAM could be regenerated at a much lower temperature of 60 °C, while still maintain a high CO2 adsorption capacity (2.61 mmol/g), comparable to that of SF-AM-HBP-NH2 (2.73 mmol/g) before NIPAM introduction. Its excellent regeneration property and the effect of energy consumption reduction make it possible to be used for CO2 adsorption in industrial process.
Collapse
Affiliation(s)
- Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zihao Liang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuoyu Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nianfang Ma
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangdong Provincial Engineering Technology Research Center of Biomaterials, Guangzhou, 510316, China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; Materials Science Institute, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
10
|
A Self‐healing and Thermal Radiation Shielding Magnetic Polyurethane of Reducing Retro Diels–Alder Reaction Temperature. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01970-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Thanakkasaranee S, Sadeghi K, Seo J. Smart steam release of newly developed temperature-responsive nanocomposite films derived from phase change material. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Guo PF, Gong HY, Zheng HW, Chen ML, Wang JH, Ye L. Iron-chelated thermoresponsive polymer brushes on bismuth titanate nanosheets for metal affinity separation of phosphoproteins. Colloids Surf B Biointerfaces 2020; 196:111282. [PMID: 32763792 DOI: 10.1016/j.colsurfb.2020.111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 01/07/2023]
Abstract
Separation of phosphoproteins plays an important role for identification of biomarkers in life science. In this work, bismuth titanate supported, iron-chelated thermoresponsive polymer brushes were prepared for selective separation of phosphoproteins. The iron-chelated thermoresponsive polymer brushes were synthesized by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by a ring opening reaction of epoxy group, and chelation of the obtained cis-diols with Fe3+ ions. The composite material was characterized to determine the size and thickness, the content of the organic polymer and the metal loading. The bismuth titanate supported, iron-chelated thermoresponsive polymer brushes showed selective binding for phosphoproteins in the presence of abundant interfering proteins, and a high binding capacity for phosphoproteins by virtue of the metal affinity between the metal ions on the polymer brushes and the phosphate groups in the phosphoproteins (664 mg β-Casein per g sorbent). The thermoresponsive property of the polymer brushes made it possible to adjust phosphoprotein binding by changing temperature. Finally, separation of phosphoproteins from a complex biological sample (i.e. milk) was demonstrated using the nanosheet-supported thermoresponsive polymer brushes.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden; Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Hai-Yue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Hong-Wei Zheng
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| |
Collapse
|
13
|
Tuan HNA, Nhu VTT. Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N, N'-Diethylacrylamide and Itaconamic Acid. Polymers (Basel) 2020; 12:E1139. [PMID: 32429371 PMCID: PMC7285170 DOI: 10.3390/polym12051139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
A series of semi-interpenetrating polymer network (semi-IPN) hydrogels based on N,N'-diethylacrylamide (DEA) and itaconamic acid (IAM) were synthesized by changing the molar ratio of linear copolymer P(DEA-co-IAM) and DEA monomer. Linear copolymer P(DEA-co-IAM) was introduced into a solution of DEA monomer to prepare pH-thermo dual responsive P(DEA-co-IAM)/PDEA semi-IPN hydrogels. The thermal gravimetric analysis (TGA) revealed that the semi-IPN hydrogel has a higher thermal stability than the conventional hydrogel, while the interior morphology by scanning electron microscopy (SEM) showed a porous structure with the pore sizes could be controlled by changing the ratio of linear copolymer in the obtained hydrogels. The oscillatory parallel-plate rheological measurements and compression tests demonstrated a viscoelastic behavior and superior mechanical properties of the semi-IPN hydrogels. Besides, the lower critical solution temperature (LCST) of the linear copolymers increased with the increase of IAM content in the feed, while the semi-IPN hydrogels increased LCSTs with the increase of linear copolymer content introduced. The pH-thermo dual responsive of the hydrogels was investigated using the swelling behavior in various pH and temperature conditions. Finally, the swelling and deswelling rate of the hydrogels were also studied. The results indicated that the pH-thermo dual responsive semi-IPN hydrogels were synthesized successfully and may be a potential material for biomedical, drug delivery or absorption applications. The further applications of semi-IPN hydrogels are being conducted.
Collapse
Affiliation(s)
- Huynh Nguyen Anh Tuan
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, #1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam;
| | | |
Collapse
|