1
|
Liu J, Zhao W, Ren J, Liu W, Li D, Wang Z, Liu Y, Liu W, Zhou T, Xu D, Chen G, Tan KB, Zhou D. Near-Zero Energy Dissipation Multilayer Ceramic Capacitors via Inhomogeneous Polarization Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501062. [PMID: 40143743 DOI: 10.1002/smll.202501062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/27/2025] [Indexed: 03/28/2025]
Abstract
Multilayer ceramic capacitors (MLCCs) demonstrate considerable potential for advance pulsed power systems, owing to their high-power density and fast charge/discharge capabilities. In light of the increasing demand for energy conservation, minimizing energy dissipation in storage capacitors while maintaining high recoverable energy densities is essential for their practical application. In this study, building upon the morphotropic phase boundary (MPB) between Bi0.5Na0.5TiO3 (BNT) and NaNbO3, heterogeneous cations (Ba2+, Zn2+, and Nb5+) are further doped using an inhomogeneous polarization design to enhance the random field. This strategy leads to the formation of a disordered polarized structure with nanoscale multiphase characteristics. The results indicate that the BNT-based MLCC achieves a high recoverable energy density (Wrec ≈ 9.1 J·cm-3) and an exceptionally high energy storage efficiency (η ≈ 97.5%) under 620 kV·cm-1. In addition, the MLCC exhibits excellent stability across a wide range of temperatures and frequencies, coupled with exceptional charge/discharge performance. This study offers a practical approach for the future development of BNT-based MLCCs with near-zero energy dissipation.
Collapse
Affiliation(s)
- Jinnan Liu
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weichen Zhao
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiajia Ren
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wenyuan Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Da Li
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhentao Wang
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yang Liu
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wenfeng Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Tao Zhou
- School of Electronic and Information Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Diming Xu
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guohua Chen
- Electronical Information Materials and Devices Engineering Research Center of Ministry of Education, Guangxi Key Laboratory of Information Materials, and School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Kar-Ban Tan
- Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Di Zhou
- Electronic Materials Research Laboratory and Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
2
|
Cheng X, Wang H, Wang S, Jiao Y, Sang C, Jiang S, He S, Mei C, Xu X, Xiao H, Han J. Hierarchically core-shell structured nanocellulose/carbon nanotube hybrid aerogels for patternable, self-healing and flexible supercapacitors. J Colloid Interface Sci 2024; 660:923-933. [PMID: 38280285 DOI: 10.1016/j.jcis.2024.01.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 μWh cm-2 at 1101.7 μW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huixiang Wang
- Department of Biological Sciences, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Shaowei Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyu Sang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Chemical Engineering Department, New Brunswick University, Fredericton, New Brunswick E3B5A3, Canada.
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Ren Y, Song X, Chen Y, Xin W, Zhu C, Huang Y, Tian N, Huang Y. Self-Healing of Poly(vinyl Alcohol)/Poly(acrylic Acid)-Polytetrahydrofuran-Poly(acrylic Acid) Blend Boosted via Shape Memory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14811-14821. [PMID: 37791913 DOI: 10.1021/acs.langmuir.3c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The self-healable polymers that can repair physical damage autonomously to extend their lifetime and reduce maintenance costs are promising intelligent materials. However, utilizing shape memory to facilitate self-repair is unusual at present. In this work, a series of poly(acrylic acid)-polytetrahydrofuran-poly(acrylic acid) polymers (PAA-PTMG-PAA, diPAA-PTMG) are synthesized as a switching phase and healing accelerator to blend into poly(vinyl alcohol) (PVA). The water swelling rate of the blend is up to 400.0% at 1/1 molecular weight ratio of PTMG/PAA and 20.0 wt % blend ratio of diPAA-PTMG to PVA, and its crystallization is changed significantly under wet conditions. The blend membrane exhibits not only a good hydrothermal-response shape memory effect but also a favorable self-healing behavior. The tensile strength and elongation at break are 12.4 MPa and 320.0% after healing at 25 °C, respectively. In particular, the wound membrane can achieve a better self-healing effect with the assistance of shape memory at 37 °C, and the elongation at the break increased to 515.9% after healing. The membrane is not cytotoxic, so it will be a promising biomedical material.
Collapse
Affiliation(s)
- Yajun Ren
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Youhua Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Wen Xin
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Chuanming Zhu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Yuan Huang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Na Tian
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Yuling Huang
- School of Engineering, Jilin Normal University, Siping 136000, China
| |
Collapse
|
4
|
He L, Luo J, Zhu P, Hou H, Ji X, Hu J. Molecular-Enhanced Raman Spectroscopy Driven by Phosphoester Electron-Transfer Bridge. J Phys Chem Lett 2023; 14:7045-7052. [PMID: 37526196 DOI: 10.1021/acs.jpclett.3c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Although both electromagnetic and charge transfer (CT) mechanisms play a role in surface-enhanced Raman scattering (SERS), the contribution of the latter is limited by poor CT efficiency. Herein, we propose molecular-enhanced Raman spectroscopy (MERS) for the first time and develop a simple strategy to induce strong CT-enhanced Raman signals using a phosphoester (POE) electron-transfer bridge. Consequently, an excellent POE-enhanced Raman effect was found when various mono-, bis-, and trisaminobenzene compounds were used as probe analytes. Quantification analysis of this MERS effect revealed that the enhancement ratio and factor of the POE molecules can be up to 87% and ∼109, respectively. Spectroscopic analysis and density functional theory calculation confirmed that this effect was because of the formation of intermolecular hydrogen bonds, which promotes CT via electronic reorganization and enhances the Raman signals of target analytes. These results demonstrate the feasibility of MERS for highly CT-enhanced Raman signals.
Collapse
Affiliation(s)
- Lili He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jia Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Pengfei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| |
Collapse
|
5
|
Xue X, Wan L, Li W, Tan X, Du X, Tong Y. A Self-Healing Gel Polymer Electrolyte, Based on a Macromolecule Cross-Linked Chitosan for Flexible Supercapacitors. Gels 2022; 9:gels9010008. [PMID: 36661776 PMCID: PMC9857939 DOI: 10.3390/gels9010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Gel polymer electrolytes with a satisfied ionic conductivity have attracted interest in flexible energy storage technologies, such as supercapacitors and rechargeable batteries. However, the poor mechanical strength inhibits its widespread application. One of the most significant ways to avoid the drawbacks of the gel polymer electrolytes without compromising their ion transportation capabilities is to create a self-healing structure with the cross-linking segment. Herein, a new kind of macromolecule chemical cross-linked network ionic gel polymer electrolyte (MCIGPE) with superior electrochemical characteristics, a high flexibility, and an excellent self-healing ability were designed, based on chitosan and dibenzaldehyde-terminated poly (ethylene glycol) (PEGDA) via dynamic imine bonds. The ionic conductivity of the MCIGPE-65 can achieve 2.75 × 10-2 S cm-1. A symmetric all-solid-state supercapacitor employing carbon cloth as current collectors, activated a carbon film as electrodes, and MCIGPE-65 as a gel polymer electrolyte exhibits a high specific capacitance of 51.1 F g-1 at 1 A g-1, and the energy density of 7.1 Wh kg-1 at a power density of 500.2 W kg-1. This research proves the enormous potential of incorporating, environmentally and economically, chitosan into gel polymer electrolytes for supercapacitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongfen Tong
- Correspondence: ; Tel.: +86-791-8395-3377; Fax: +86-791-8395-3373
| |
Collapse
|
6
|
Cao J, Wang Y, Guo Q, Cui Q, Su G, Zhou T, Zhang X, Zhang C. Mechano-Regulable and Healable Silk-Based Materials for Adaptive Applications. Biomacromolecules 2022; 23:4296-4307. [PMID: 36059206 DOI: 10.1021/acs.biomac.2c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically adaptive materials responsive to environmental stimuli through changing mechanical properties are highly attractive in intelligent devices. However, it is hard to regulate the mechanical properties of most mechanically adaptive materials in a facile way. Moreover, it remains a challenge to achieve mechano-regulable materials with mechanical properties ranging from high strength to extreme toughness. Here, inspired by the reversible nanofibril network structure of skeletal muscle to achieve muscle strength regulation, we present a mechano-regulable biopolymeric silk fibroin (SF) composite through regulating dynamic metal-ligand coordination bonds by using water molecules as competitive regulators. Efficient interfacial hydrogen bonds between tannic acid-tungsten disulfide nanohybrids and the SF matrix endow the composite with high mechanical strength and self-healing ability. The resulting composite exhibits 837-fold change in Young's modulus (5.77 ± 0.61 GPa to 6.89 ± 0.64 MPa) after water vapor triggering, high mechanical properties (72.5 ± 6.3 MPa), and excellent self-healing efficiency (nearly 100%). The proof-of-concept ultraconformable iontronic skin and smart actuators are demonstrated, thereby providing a direction for future self-adaptive smart device applications.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yuting Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Quanquan Guo
- Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Qinke Cui
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Gehong Su
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.,College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Shakir I, Almutairi Z, Shar SS. Fabrication of nanostructured iron-cobalt layered double hydroxide: An innovative approach for the facile synthesis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Yan S, Mahyoub SA, Lin J, Zhang C, Hu Q, Chen C, Zhang F, Cheng Z. Au aerogel for selective CO 2electroreduction to CO: ultrafast preparation with high performance. NANOTECHNOLOGY 2021; 33:125705. [PMID: 34902843 DOI: 10.1088/1361-6528/ac4287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Noble metal aerogels (NMAs) have been used in a variety of (photo-)electrocatalytic reactions, but pure Au aerogel (AG) has not been used in CO2electroreduction to date. To explore the potential application in this direction, AG was prepared to be used as the cathode in CO2electroreduction to CO. However, the gelation time of NMAs is usually very long, up to several weeks. Here, an excess NaBH4and turbulence mixing-promoted gelation approach was developed by introducing magnetic stirring as an external force field, which therefore greatly shortened the formation time of Au gels to several seconds. The AG-3 (AG with Au loading of 0.003 g) exhibited a high CO Faradaic efficiency (FE) of 95.6% at an extremely low overpotential of 0.39 V, and over 91% of CO FE was reached in a wide window of -0.4 to -0.7 V versus the reversible hydrogen electrode (RHE). Partial current density in CO was measured to be -19.35 mA cm-2at -0.8 V versus RHE under 1 atm of CO2. The excellent performance should be ascribed to its porous structure, abundant active sites, and large electrochemical active surface area. It provides a new method for preparation of AG with ultrafast gelation time and large production at room temperature, and the resulting pure AG was for the first time used in the field of CO2electroreduction.
Collapse
Affiliation(s)
- Shenglin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Samah A Mahyoub
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jing Lin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chunxiao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qing Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chengzhen Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Fanghua Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhenmin Cheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|