1
|
Chen X, Chen X. Optimization design of a two-step microreactor with spiral structure for high-performance catalytic reactions. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2024; 22:1161-1170. [DOI: 10.1515/ijcre-2024-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Abstract
In order to enhance the efficiency of diphenyldimethoxysilane preparation in microreactors, this study utilized the computational fluid dynamics simulation based on the finite element method to explore the impact of the internal structural parameters of the spiral two-step microreactor (STMR) on the reaction outcomes, with the aim of optimizing its structure for high-performance catalytic reactions. By designing a microreactor based on the Archimedean spiral shape and introducing two ribbed obstacles, the structure was optimized through adjusting the relevant ratios. The effects of different-sized structures and obstacles within the reaction zone and non-reaction zone on the product concentration and reaction results were discussed. The results demonstrate that lower obstacle heights and smaller aspect ratios (P = 2:7, R = 5:6) are beneficial for improving the reaction efficiency and product concentration. This study offers a theoretical foundation for microreactor design and is anticipated to further drive the development of microreactor technology.
Collapse
Affiliation(s)
- Xinkun Chen
- College of Transportation , Ludong University , Yantai , Shandong 264025 , China
| | - Xueye Chen
- College of Transportation , Ludong University , Yantai , Shandong 264025 , China
| |
Collapse
|
2
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Spitsina E, Barinov D. Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties. Polymers (Basel) 2024; 16:3493. [PMID: 39771345 PMCID: PMC11728562 DOI: 10.3390/polym16243493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids. Upon initiation by visible light at 470 nm and in the absence of radical initiators, yields from the ternary copolymers reached 94% in 2.5 h when the process was carried out in continuous flow mode using 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid as a light-sensitive RAFT agent. The polymers were characterized using size exclusion chromatography, IR and NMR spectroscopy, and differential scanning calorimetry. The copolymers featured a sufficiently high molecular weight (93-146 kDa) consistent with theoretical values and satisfactory dispersities in the range of 1.18-1.45. The pH-responsive properties were studied in deionized water, saline, and buffer solutions. Dramatic differences in LCST behavior were observed in strong and weak acid-based polyelectrolytes. The introduction of sulfonic acid units, even in very small amounts, completely suppressed the LCST transition in deionized water while maintaining it in the saline and buffer solutions, with a negligible LCST dependence on the pH. In contrast, the incorporation of weak methacrylic acid demonstrated a pronounced pH dependence. The peculiarities of micelle formation in aqueous solutions were investigated and critical micelle concentrations and their ability to retain pyrene, a hydrophobic drug model, were determined. It was observed that anionic molecular brushes formed small micelles with aggregation numbers of 1-2 at concentrations in the order of 10-4 mg/mL. These micelles have a high ability to entrap pyrene, which makes them a promising tool for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya Oblast, Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Ekaterina Spitsina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Dmitry Barinov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| |
Collapse
|
3
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Ovchinnikov A, Zamyshlyayeva O, Pavlova I, Ozhogina O, Chubenko M. Amide-Containing Bottlebrushes via Continuous-Flow Photoiniferter Reversible Addition-Fragmentation Chain Transfer Polymerization: Micellization Behavior. Polymers (Basel) 2023; 16:134. [PMID: 38201799 PMCID: PMC10780833 DOI: 10.3390/polym16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Herein, a series of ternary amphiphilic amide-containing bottlebrushes were synthesized by photoiniferter (PI-RAFT) polymerization of macromonomers in continuous-flow mode using trithiocarbonate as a chain transfer agent. Visible light-mediated polymerization of macromonomers under mild conditions enabled the preparation of thermoresponsive copolymers with low dispersity and high yields in a very short time, which is not typical for the classical reversible addition-fragmentation chain transfer process. Methoxy oligo(ethylene glycol) methacrylate and alkoxy(C12-C14) oligo(ethylene glycol) methacrylate were used as the basic monomers providing amphiphilic and thermoresponsive properties. The study investigated how modifying comonomers, acrylamide (AAm), methacrylamide (MAAm), and N-methylacrylamide (-MeAAm) affect the features of bottlebrush micelle formation, their critical micelle concentration, and loading capacity for pyrene, a hydrophobic drug model. The results showed that the process is scalable and can produce tens of grams of pure copolymer per day. The unmodified copolymer formed unimolecular micelles at temperatures below the LCST in aqueous solutions, as revealed by DLS and SLS data. The incorporation of AAm, MAAm, and N-MeAAm units resulted in an increase in micelle aggregation numbers. The resulting bottlebrushes formed uni- or bimolecular micelles at extremely low concentrations. These micelles possess a high capacity for loading pyrene, making them a promising choice for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya obl., Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Alexey Ovchinnikov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Zamyshlyayeva
- Department of High Molecular Compounds and Colloidal Chemistry, Faculty of Chemistry, Lobachevsky State University, Gagarina pr. 23, 603950 Nizhny Novgorod, Russia
| | - Irina Pavlova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Ozhogina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Maria Chubenko
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Su N. Synthesis of Poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) Modified Carbon Spheres. Polymers (Basel) 2023; 15:3510. [PMID: 37688137 PMCID: PMC10490481 DOI: 10.3390/polym15173510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
The paper reports a facile synthesis of novel anionic spherical polymer brushes which was based on grafting sodium 2-acrylamido-2-methylpropane-1-sulfonate from the surface of 4,4'-Azobis (4-cyanopentanoyl chloride)-modified carbon spheres. Various characterization methods involving a scanning electron microscope, energy dispersive X-ray spectroscopy, Fourier transform infrared spectrum, and thermo-gravimetric analysis were utilized to analyze the morphology, chemical composition, bonding structure, and thermal stability, respectively. The molecular weight (Mw) and polydispersity (Mw/Mn) of brushes were 616,000 g/mol and 1.72 determined by gel permeation chromatography experiments. Moreover, the dispersibility of ASPB in water and in the presence of aqueous NaCl solutions of different concentrations was investigated. Results show that the dispersibility of carbon spheres has been enhanced owing to grafted polyelectrolyte chains, while the zeta potential of the particle decreases and its brush layer shrinks upon exposure to sodium ions (Na+).
Collapse
Affiliation(s)
- Na Su
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China;
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200125, China
| |
Collapse
|
5
|
Controlling gas–liquid segment length in microchannels using a high-speed valve. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Xiang L, Zhong Z, Liu S, Shang M, Luo ZH, Su Y. Kinetic Modeling Study on the Preparation of Branched Polymers with Various Feeding Strategies. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Zihao Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Saier Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Minjing Shang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Zheng-Hong Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Yuanhai Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
7
|
Facile microfabrication of three dimensional-patterned micromixers using additive manufacturing technology. Sci Rep 2022; 12:6346. [PMID: 35428793 PMCID: PMC9012767 DOI: 10.1038/s41598-022-10356-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
This study investigates the manufacturing method of oblique patterns in microchannels and the effect of these patterns on mixing performance in microchannels. To fabricate three-dimensional (3D) and oblique patterns in microchannels, 3D printing and replica methods were utilized to mold patterns and microchannels, respectively. The angle and size of the patterns were controlled by the printing angle and resolution, respectively. The mixing efficiency was experimentally characterized, and the mixing principle was analyzed using computational fluid dynamics simulation. The analysis showed that the mixing channel cast from the mold printed with a printing angle of 30° and resolution of 300 μm exhibited the best mixing efficiency with a segregation index of approximately 0.05 at a Reynolds number of 5.4. This was because, as the patterns inside the microchannel were more oblique, “split” and “recombine” behaviors between two fluids were enhanced owing to the geometrical effect. This study supports the use of the 3D printing method to create unique patterns inside microchannels and improve the mixing performance of two laminar flows for various applications such as point-of-care diagnostics, lab-on-a-chip, and chemical synthesis.
Collapse
|
8
|
Xiang L, Zhong Z, Shang M, Su Y. Microflow synthesis of stimuli-responsive star polymers and its application on catalytic reduction. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Laurel M, MacKinnon D, Becker J, Terracciano R, Drain BA, Houck HA, Becer CR. Degradable thiomethacrylate core-crosslinked star-shaped polymers. Polym Chem 2022. [DOI: 10.1039/d2py00901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degradable polymers are considered to present a promising solution to combat plastic pollution. However, many polymers are based on ester and amide bonds, which often require high temperatures and acidic/basic...
Collapse
|
10
|
Continuous Differential Microemulsion Polymerization to Prepare Nanosized Polymer Latices in Microreactors. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/2966920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microreactors are a promising platform for continuous synthesis of polymer latices when combined with emulsion polymerization. However, this application has long been haunted by fouling and clogging problems. In this work, we proposed the strategy of conducting differential microemulsion polymerization in microreactors within a biphasic slug flow and achieved rapid and stable preparation of nanosized PMMA latices (polymeric content as high as 15.7% with average particle size smaller than 20 nm). We started by exploring the temperature thresholds with thermal and redox initiation, the effect of initiator concentration, and the kinetic characteristics of microemulsion polymerization at different temperatures. Then, as for the differential microemulsion polymerization, extensive investigation was made into the effects of the volumetric flow ratio, the prepolymerization time, the initiator concentration, and the solid content of the initial microemulsion. Finally, we compared the differential microemulsion polymerization with the soap-free emulsion polymerization in the slug flow. The striking advantages in the polymerization rate, the average particle diameter, and the size distribution reflected higher density of particle nuclei, larger specific surface area of particles, and the pivotal effect of the persistent particle nucleation in the microemulsion polymerization.
Collapse
|
11
|
Zhang Y, Lu K, He M, Zuo X, Li G, Yang X. Constructing a Rigid-and-Flexible Twin-Stage Gradient Interphase through Starlike Copolymer Coating on Carbon Fibers: A Route for Enhancing Interfacial Properties of Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55633-55647. [PMID: 34780158 DOI: 10.1021/acsami.1c14535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A rigid-and-flexible interphase was established by a starlike copolymer (Pc-PGMA/Pc) consisting of one tetraaminophthalocyanine (TAPc) core with four TAPc-difunctionalized poly(glycidyl methacrylate) (PGMA) arms through the surface modification of carbon fibers (CFs) and compared with various interphases constructed by TAPc and TAPc-connected PGMA (Pc-PGMA). The increase in the content of N-C═O showed that PGMA/Pc branches were successfully attached onto the CF-(Pc-PGMA/Pc) surface, exhibiting concavo-convex microstructures with the highest roughness. Through adhesive force spectroscopy by atomic force microscopy (AFM) with peak force quantitative nanomechanical mapping (PF-QNM) mode and visualization of the relative distribution of TAPc/PGMA via a Raman spectrometer, a rigid interphase with highly cross-linked TAPc and a flexible layer from PGMA arms as the soft segment were separately detected in CF-TAPc/EP and CF-(Pc-PGMA)/EP composites. The rigid-and-flexible interphase in the CF-(Pc-PGMA/Pc)/EP composite provided excellent stress-transfer capability by the rigid inner modulus intermediate layer and energy absorption efficiency from the flexible outer layer, which contributed to 64.6 and 61.8% increment of transverse fiber bundle test (TFBT) strength, and 33.8 and 40.6% enhancement in interfacial shear strength (IFSS) in comparison with those of CF-TAPc/EP and CF-(Pc-PGMA)/EP composites. Accordingly, schematic models of the interphase reinforcing mechanism were proposed. The interfacial failures in CF-TAPc/EP and CF-(Pc-PGMA)/EP composites were derived from the rigid interphase without effective relaxation of interfacial stress and soft interphase with excessive fiber-matrix interface slippage, respectively. The cohesive failure in the CF-(Pc-PGMA/Pc)/EP composite was attributed to the crack deflection through the balance of the modulus and deformability from the twin-stage gradient intermediate layer.
Collapse
Affiliation(s)
- Yanjia Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kangyi Lu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mei He
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaobiao Zuo
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| | - Gang Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|