1
|
Fernández-Tena A, Fernández M, Sandoval AJ, Calafel MI, Aguirre A, Aranburu N, Guerrica-Echevarria G, Di Lorenzo ML, Longo A, Vega JF, Müller AJ. Enhancing melt strength and crystallization kinetics in polylactide: Influence of chain topology. Int J Biol Macromol 2024; 282:136783. [PMID: 39476897 DOI: 10.1016/j.ijbiomac.2024.136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The generation of long-chain branches (LCB) in biobased and biodegradable polylactide (PLA) by adding different amounts of a chain extender is studied. The rheological and calorimetric behavior have been used to determine the effect of LCB presence and their topology on PLA melt strength and crystallization behavior. Rheological modeling of linear and non-linear viscoelastic shear and extensional properties identified several possible branched structures. Moreover, remarkable differences were observed for the different topologies regarding the intrinsic non-linear parameters and the intra-cycle elastic and viscous non-linearities. Differential scanning calorimetry and polarized light optical microscopy measurements revealed a significant increase in the nucleation density and rate of PLA with increasing the amount of LCB, albeit they provoke a decrease in the growth rate due to a reduction in chain diffusion. Nevertheless, overall crystallization rate values revealed a predominant effect of nucleation over crystal growth. The introduction of LCB within the chains is highly beneficial as they increase nucleation, crystallinity, and elongational viscosity, thus improving the properties of biodegradable PLA.
Collapse
Affiliation(s)
- Ainhoa Fernández-Tena
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Aleida J Sandoval
- Laboratorio de Procesamiento de Alimentos, Departamento de Tecnología de Procesos Biológicos y Bioquímicos, Universidad Simón Bolívar, Aptdo. 89000, 1080A Caracas, Venezuela
| | - M Itxaso Calafel
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Amaia Aguirre
- POLYMAT and Department of Applied Chemistry, University of the Basque Country UPV/EHU, Tolosa hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - Nora Aranburu
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Gonzalo Guerrica-Echevarria
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Maria Laura Di Lorenzo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), c/o Comprensorio Olivetti, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Alessandra Longo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), c/o Comprensorio Olivetti, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Juan Francisco Vega
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia (IEM-CSIC), c/Serrano 113bis, 28006 Madrid, Spain.
| | - Alejandro J Müller
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
2
|
Di Lorenzo ML. Crystallization of Poly(ethylene terephthalate): A Review. Polymers (Basel) 2024; 16:1975. [PMID: 39065291 PMCID: PMC11280767 DOI: 10.3390/polym16141975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(ethylene terephthalate) (PET) is a thermoplastic polyester with excellent thermal and mechanical properties, widely used in a variety of industrial fields. It is a semicrystalline polymer, and most of the industrial success of PET derives from its easily tunable crystallization kinetics, which allow users to produce the polymer with a high crystal fraction for applications that demand high thermomechanical resistance and barrier properties, or a fully amorphous polymer when high transparency of the product is needed. The main properties of the polymer are presented and discussed in this contribution, together with the literature data on the crystal structure and morphology of PET. This is followed by an in-depth analysis of its crystallization kinetics, including both primary crystal nucleation and crystal growth, as well as secondary crystallization. The effect of molar mass, catalyst residues, chain composition, and thermo-mechanical treatments on the crystallization kinetics, structure, and morphology of PET are also reviewed in this contribution.
Collapse
Affiliation(s)
- Maria Laura Di Lorenzo
- National Research Council, Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
3
|
Agustin-Salazar S, Ricciulli M, Ambrogi V, Cerruti P, Scarinzi G. Thermomechanical Properties and Biodegradation Behavior of Itaconic Anhydride-Grafted PLA/Pecan Nutshell Biocomposites. Polymers (Basel) 2022; 14:polym14245532. [PMID: 36559900 PMCID: PMC9785769 DOI: 10.3390/polym14245532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The use of lignocellulose-rich biowaste as reinforcing filler in biodegradable polymers represents a sustainable option to obtain cost-effective bio-based materials to be used for several applications. In addition, the scarce polymer-biofiller interaction can be improved by reactive functionalization of the matrix. However, the obtained biocomposites might show high thermal deformability and possibly a slow biodegradation rate. In this work, polylactic acid (PLA) was first chemically modified with itaconic anhydride, and then biocomposites containing 50 wt.% of pecan (Carya illinoinensis) nutshell (PNS) biowaste were prepared and characterized. Their physical and morphological properties were determined, along with their biodegradation behavior in soil. Moreover, the effects of two environmentally friendly physical treatments, namely ball-milling of the filler and thermal annealing on biocomposites, were assessed. Grafting increased PLA thermal-oxidative stability and crystallinity. The latter was further enhanced by the presence of PNS, achieving a 30% overall increase compared to the plain matrix. Accordingly, the biocomposites displayed mechanical properties comparable to those of the plain matrix. Thermal annealing dramatically increased the mechanical and thermomechanical properties of all materials, and the heat deflection temperature of the biocomposites dramatically increased up to 60 °C with respect to the non-annealed samples. Finally, PNS promoted PLA biodegradation, triggering the swelling of the composites under soil burial, and accelerating the removal of the polymer amorphous phase. These results highlight the potential of combining natural fillers and environmentally benign physicochemical treatments to tailor the properties of PLA biocomposites. The high biofiller content used in this work, in conjunction with the chemical and physico-mechanical treatments applied, increased the thermal, mechanical, and thermomechanical performance of PLA biocomposites while improving their biodegradation behavior. These outcomes allow for widening the application field of PLA biocomposites in those areas requiring a stiff and lightweight material with low deformability and faster biodegradability.
Collapse
Affiliation(s)
- Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Chemical and Metallurgical Engineering (DIQyM), University of Sonora, Building 5B, Del Conocimiento, Centro, Hermosillo C.P. 83000, Sonora, Mexico
- Correspondence: (S.A.-S.); (P.C.)
| | - Marco Ricciulli
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Veronica Ambrogi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy
- Correspondence: (S.A.-S.); (P.C.)
| | - Gennaro Scarinzi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
4
|
Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly ( L-Lactic Acid) (PLLA). Polymers (Basel) 2022; 14:polym14112188. [PMID: 35683866 PMCID: PMC9182790 DOI: 10.3390/polym14112188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Poly-L-lactic acid (PLLA) is an environmentally friendly and renewable polymer material with excellent prospects, but its low crystallization rate greatly limits its application. Through the amidation reaction between amino hyperbranched polymer (HBP N103) and carboxylated carbon nanotubes (CNTs), CNTs-N103 was obtained. The modification was confirmed by Fourier-transform infrared (FTIR) spectroscopy, X-ray electron spectroscopy (XPS) and thermogravimetric analysis (TGA). Using transmission electron microscopy (TEM), we observed the changes on the surface of modified CNTs. PLLA/CNT composites were prepared, and differential scanning calorimetry (DSC) was used to investigate the crystallization behavior of the composites. The results showed that the addition of CNTs could greatly improve the crystallization properties of PLLA; at the same concentration, the modified CNTs had better regulation ability in PLLA crystallization than the unmodified CNTs. Moreover, in the concentration range of 0.1–1%, with the increase in HBP concentration, the ability of CNTs-N103 to regulate the crystallization of PLLA increased as well. Wide-angle X-ray diffraction (WAXD) once again proved the improvement of the crystallization ability. The results of polarized optical microscopy (PLOM) showed that the number of nucleation points increased and the crystal became smaller.
Collapse
|
5
|
Boonpavanitchakul K, Kangwansupamonkon W, Pimpha N, Magaraphan R. Influence of
sericin‐g‐PLA
as an organic nucleating agent for preparing biodegradable blend films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Wiyong Kangwansupamonkon
- National Nanotechnology Center National Science and Technology Development Agency Klong Luang Pathumthani Thailand
- Academy of Sciences The Royal Society of Thailand Bangkok Thailand
| | - Nuttaporn Pimpha
- National Nanotechnology Center National Science and Technology Development Agency Klong Luang Pathumthani Thailand
| | - Rathanawan Magaraphan
- The Petroleum and Petrochemical College Chulalongkorn University Bangkok Thailand
- Polymer Processing and Polymer Nanomaterials Research Unit Chulalongkorn University Bangkok Thailand
- Green Materials for Industrial Application Research Unit, Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|