1
|
Vargas-Machado PJ, López-Saucedo F, Bucio E. Poly(Vinylpyrrolidone) Graft in Poly(Vinyl Chloride) Catheters Using Gamma Radiation for Ciprofloxacin Loading and Release. Polymers (Basel) 2025; 17:612. [PMID: 40076105 PMCID: PMC11902714 DOI: 10.3390/polym17050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
This study addresses the modification of poly(vinyl chloride) catheters with N-vinylpyrrolidone and ciprofloxacin to achieve an antimicrobial surface. The copolymer was synthesized using the grafting-from method with gamma rays as a physical initiator and under different reaction conditions (absorbed dose, monomer concentration, and solvent). The modified catheters attained hydrophilic properties and were tested for ciprofloxacin loading and release efficiency. Antibiotic-loaded materials successfully inhibited the growth of S. aureus and P. aeruginosa strains. Therefore, surfaces with PVP chains exhibit suitable features for the loading and release of small molecules like ciprofloxacin (a fluoroquinolone). Results suggest that graft copolymers are suitable materials for the fabrication of biomedical devices with antibacterial features.
Collapse
Affiliation(s)
| | - Felipe López-Saucedo
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
2
|
Zhao J, Zeng D, Wang Q, Lin Z, Vogel F, Li W, Zhang P. Effects of a dual functional filler, polyethersulfone-g-carboxymethyl chitosan@MWCNT, for enhanced antifouling and penetration performance of PES composite membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121611. [PMID: 38959769 DOI: 10.1016/j.jenvman.2024.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ultrafiltration technology, separating water from impurities by the core membrane, is an effective strategy for treating wastewater to meet the ever-growing requirement of clean and drinking water. However, the similar nature of hydrophobic organic pollutants and the membrane surface leads to severe adsorption and aggregation, resulting unavoidable membrane degradation of penetration and rejection. The present study presents a novel block amphiphilic polymer, polyethersulfone-g-carboxymethyl chitosan@MWCNT (PES-g-CMC@MWCNT), which is synthesized by grafting hydrophobic polyethersulfone to hydrophilic carboxymethyl chitosan in order to suspend CMC in organic solution. A mixture of hydrophilic carboxymethyl chitosan and hydrophobic polymers (polyethersulfone), in which hydrophilic segments are bonded to hydrophobic segments, could provide hydrophilic groups, as well as gather and remain stable on membrane surfaces by their hydrophobic interaction for improved compatibility and durability. The resultant ultrafiltration membranes exhibit high water flux (198.10 L m-2·h-1), suitable hydrophilicity (64.77°), enhanced antifouling property (82.96%), while still maintains excellent rejection of bovine serum albumin (91.75%). There has also been an improvement in membrane cross-sectional morphology, resulting in more regular pores size (47.64 nm) and higher porosity (84.60%). These results indicate that amphiphilic polymer may be able to significantly promote antifouling and permeability of ultrafiltration membranes.
Collapse
Affiliation(s)
- Jiahui Zhao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Dahai Zeng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Qiwei Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Florian Vogel
- Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization Technology, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, Hainan Province, China; Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, Hainan Province, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Mousa SA, Abdallah H, Khairy SA. Low-cost photocatalytic membrane modified with green heterojunction TiO 2/ZnO nanoparticles prepared from waste. Sci Rep 2023; 13:22150. [PMID: 38092891 PMCID: PMC10719331 DOI: 10.1038/s41598-023-49516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of photocatalysis and membrane procedures represents a promising approach for water treatment. This study utilized green synthesis methods to produce TiO2 nanoparticles (NPs) using Pomegranate extract and ZnO nanoparticles using Tangerine extract. These nanoparticles were then incorporated into a polyvinyl chloride (PVC) nanocomposite photocatalytic membrane. Different devices were used to examine the properties of nanocomposite membranes. The prepared membranes' morphology was examined using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The hydrophilicity of the membrane surface was assessed through the measurement of contact angle, while the crystal structure and chemical bonding were analyzed using Raman and Fourier transform infrared spectroscopy (FT-IR). The study also encompassed an examination of the mechanical properties. The hydrophilicity of the modified membrane exhibited a significant improvement. Additionally, there was an observed increase in both the pure water flux and rejection values. The photocatalytic activity of the membrane was found to be enhanced when exposed to sunlight as compared to when kept in the dark. The TiO2/ZnO nanocomposites membrane exhibited the highest level of photocatalytic degradation, achieving a rejection rate of 98.7% compared to the unmodified membrane. Therefore, it was determined that the TiO2/ZnO nanocomposites membrane exhibited superior performance to the other membranes assessed. The potential utility of our research lies in its application within the water treatment industry, specifically as an effective technique for modifying PVC membranes.
Collapse
Affiliation(s)
- Sahar A Mousa
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Heba Abdallah
- Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, PO Box 12622, Giza, Egypt
| | - S A Khairy
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
4
|
Xia X, Yuan X, Zhang G, Su Z. Antifouling Surfaces Based on Polyzwitterion Loop Brushes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47520-47530. [PMID: 37773963 DOI: 10.1021/acsami.3c10267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Antifouling surfaces have attracted increasing interest in recent years due to their potential application in various fields. In this work, we report a loop polyzwitterionic coating that exhibits excellent resistance to protein adsorption. Triblock and diblock copolymers of 2-[(2-hydroxyethyl)disulfanyl]ethyl methacrylate) (HSEMA) and 2-(dimethylamino)ethyl methacrylate) (DMAEMA) were synthesized by atom-transferred radical polymerization, followed by betainization of the DMAEMA block with 1,3-propane sultone and reduction of the disulfide bond in HSEMA to yield a triblock copolymer comprising a zwitterionic poly(sulfobetaine methacrylate) (PSBMA) midblock and poly(2-sulfanylethyl methacrylate) (PSEMA) terminal blocks as well as its diblock analogue that was of the same composition as the former and half the chain length. Both copolymers adsorbed to the gold substrate via the thiol groups in the terminal PSEMA block(s), creating loop and linear PSBMA brush coatings of comparable thickness, as revealed by X-ray photoelectron spectroscopy and ellipsometry. Adsorption of bovine serum albumin and fibrinogen as model proteins from solution to these surfaces was investigated by a quartz crystal microbalance with dissipation and confocal laser scanning microscopy (CLSM), and platelet and bacterial adhesions were assessed by scanning electron microscopy and CLSM. The results demonstrate that both linear and loop polyzwitterion brushes are excellent in resisting the adsorption of the foulants, and the loop brushes are superior to the linear analogues.
Collapse
Affiliation(s)
- Xiaoyu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodie Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Guangyu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Zhao J, Zhang P, Cao L, Huo H, Lin H, Wang Q, Vogel F, Li W, Lin Z. Amphiphilic Grafted Polymers Based on Citric Acid and Aniline Used to Enhance the Antifouling and Permeability Properties of PES Membranes. Molecules 2023; 28:molecules28041936. [PMID: 36838923 PMCID: PMC9960940 DOI: 10.3390/molecules28041936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Water treatment technology based on ultrafiltration (UF) faces the problem of severe membrane fouling due to its inherent hydrophobicity. The use of amphiphilic polymers that possess both hydrophobic and hydrophilic chain segments can be advantageous for the hydrophilic modification of UF membranes due to their excellent combination in the membrane matrix. In the present study, we examined a novel amphiphilic CA-g-AN material, constructed by grafting citric acid (CA) to aniline (AN), as a modified material to improve the hydrophilicity of a PES membrane. This material was more compatible with the polymer membrane matrix than a pure hydrophilic modified material. The polyethersulfone (PES) membranes modified by amphiphilic CA-g-AN demonstrated a higher water flux (290.13 L·m-2·h-1), which was more than eight times higher than that of the pure PES membrane. Furthermore, the flux recovery ratio (FRR) of the modified membrane could reach 83.24% and the value of the water contact angle (WCA) was 76.43°, demonstrating the enhanced hydrophilicity and antifouling ability of the modified membranes. With this study, we aimed to develop a new amphiphilic polymer to improve the antifouling property and permeability of polymer-based UF membranes to remove organic pollutants from water.
Collapse
Affiliation(s)
| | - Peng Zhang
- Correspondence: (P.Z.); (L.C.); (Z.L.); Tel.: +86-20-8522-3562 (P.Z.)
| | - Lin Cao
- Correspondence: (P.Z.); (L.C.); (Z.L.); Tel.: +86-20-8522-3562 (P.Z.)
| | | | | | | | | | | | - Zhidan Lin
- Correspondence: (P.Z.); (L.C.); (Z.L.); Tel.: +86-20-8522-3562 (P.Z.)
| |
Collapse
|
6
|
Xiong C, Xiong W, Mu Y, Pei D, Wan X. Mussel-inspired polymeric coatings with the antifouling efficacy controlled by topologies. J Mater Chem B 2022; 10:9295-9304. [PMID: 36345846 DOI: 10.1039/d2tb01851a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Block copolymers with different topologies (linear, loop, 3-armed and 4-armed polymers) containing poly(N-vinylpyrrrolidone) (PVP) antifouling blocks and terminal poly(dopamine-acrylamide) (PDAA) anchoring blocks were synthesized. These polymers can form a robust antifouling nanolayer on various surfaces. The morphologies of the polymer-modified surfaces are strongly dependent on the topologies of the polymers: with the increase of arm numbers, the morphology evolves from the smooth surface to the nanoscale coarse surface. As a result, the hydrophilicity of the coatings increases with the increase of degree of nanoscale roughness, and the 4-armed block copolymer forms a superhydrophilic surface with a water contact angle (WCA) as low as 8.7°. Accordingly, the linear diblock copolymer exhibits the worst antifouling efficiency, while the 4-armed polymer exhibits the best antifouling efficiency. This is the first example systematically showing that the antifouling efficacy could be adjusted simply by the topology of the coatings. Cell viability studies revealed that all of the copolymers exhibit excellent cytocompatibility. These biocompatible polymers with narrowly distributed molecular weight might find niches for antifouling applications in various areas such as anti-protein absorption, anti-bacterial and anti-marine fouling.
Collapse
Affiliation(s)
- Chenxi Xiong
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| | - Wenjuan Xiong
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| | - Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| | - Danfeng Pei
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 210062, P. R. China.
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
| |
Collapse
|
7
|
Photocatalytic antifouling nanohybrid polysulfone membrane using the synergetic effect of graphene oxide and SiO2 for effective treatment of natural rubber-laden wastewater. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Li J, Chen G, Luo S, Pang H, Gao C, Huang S, Liu S, Qin S. Tuning the microstructure of
SMA
/
CPVC
membrane for enhanced separation performance by adjusting the coagulation bath temperature. J Appl Polym Sci 2022. [DOI: 10.1002/app.52148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Juan Li
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Guijing Chen
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Shanshan Luo
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Huixia Pang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Chengtao Gao
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Shaowen Huang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Shan Liu
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
- College of Materials and Energy Engineering Guizhou Institute of Technology Guiyang China
| | - Shuhao Qin
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| |
Collapse
|