1
|
Wolski K, Smenda J, Świerz W, Dąbczyński P, Marzec M, Zapotoczny S. Self-Templating Copolymerization to Produce Robust Conductive Nanocoatings Based on Conjugated Polymer Brushes with Implementable Memristive Characteristics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309216. [PMID: 38334248 DOI: 10.1002/smll.202309216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Indexed: 02/10/2024]
Abstract
An effective synthesis of conductive polymer brushes, i.e., self-templating surface-initiated copolymerization (ST-SICP), is developed. It proceeds through copolymerization of pendant thiophene groups in the precursor multimonomer poly(3-methylthienyl methacrylate) (PMTM) brushes with free 3-methylthiophene (3MT) monomers leading to PMTM-co-P3MT brushes. This approach leads to improved conformational freedom of generated conjugated poly(thiophene)-based chains and their higher share in the brushes with respect to conjugation of pendant thiophene groups only. As a result, best performing conjugated PMTM-co-P3MT brushes demonstrate high ohmic conductivity in both out-of-plane and in-plane direction. Furthermore, thanks to the covalent anchoring as well as intra- and intermolecular connections, highly stable and mechanically robust nanocoatings are produced which can survive mechanical cleaning and long-term storage under ambient conditions. Grafting of ionic poly(sodium 4-styrenesulfonate) (PSSNa) in between PMTM-co-P3MT chains brings new properties to such binary mixed brushes that can operate as thin-film memristive coating with switchable conductance. It is worth mentioning that the crucial synthetic steps, i.e., grafting of precursor PMTM brushes by surface-initiated organocatalyzed atom transfer radical polymerization (SI-O-ATRP) and PSSNa chains by surface-initiated photoiniferter-mediated polymerization (SI-PIMP) are conducted under ambient conditions using only microliter volumes of reagents providing methodology that can be considered for use beyond the laboratory scale.
Collapse
Affiliation(s)
- Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Joanna Smenda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, Krakow, 30-348, Poland
| | - Wojciech Świerz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Paweł Dąbczyński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow, 30-348, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, Krakow, 30-059, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| |
Collapse
|
2
|
Choi KR, Honig ML, Bühlmann P. Covalently attached ionophores extend the working range of potentiometric pH sensors with poly(decyl methacrylate) sensing membranes. Analyst 2024; 149:1132-1140. [PMID: 38205703 DOI: 10.1039/d3an02047a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The pH working range of solid-contact ion-selective electrodes (ISEs) with plasticizer-free poly(decyl methacrylate) sensing membranes is shown to be expanded by covalent attachment of H+ ionophores to the polymeric membrane matrix. In situ photopolymerization not only incorporates the ionophores into the polymer backbone, but at the same time also attaches the sensing membranes covalently to the underlying inert polymer and nanographite solid contact, minimizing sensor drift and preventing failure by membrane delamination. A new pyridine-based H+ ionophore, 3-(pyridine-3-yl)propyl methacrylate, has lower basicity than trialkylamine ionophores and expands the upper detection limit. This reduces in particular the interference from hydrogen phthalate, which is a common component of commercial pH buffers. Moreover, the lower detection limit is improved by replacing the CH2CH2 spacer of previously reported dialkylaminoethyl methacrylates with a (CH2)10 spacer, which increases its basicity. Notably, for the more basic and highly cation-selective ionophore 10-(diisopropylamino)decyl methacrylate, the extent of counterion interference from hydrogen phthalate shifted the upper detection limit to lower pH by nearly one pH unit when the crosslinker concentration was decreased.
Collapse
Affiliation(s)
- Kwangrok R Choi
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
| | - Madeline L Honig
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Su N. Synthesis of Poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) Modified Carbon Spheres. Polymers (Basel) 2023; 15:3510. [PMID: 37688137 PMCID: PMC10490481 DOI: 10.3390/polym15173510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
The paper reports a facile synthesis of novel anionic spherical polymer brushes which was based on grafting sodium 2-acrylamido-2-methylpropane-1-sulfonate from the surface of 4,4'-Azobis (4-cyanopentanoyl chloride)-modified carbon spheres. Various characterization methods involving a scanning electron microscope, energy dispersive X-ray spectroscopy, Fourier transform infrared spectrum, and thermo-gravimetric analysis were utilized to analyze the morphology, chemical composition, bonding structure, and thermal stability, respectively. The molecular weight (Mw) and polydispersity (Mw/Mn) of brushes were 616,000 g/mol and 1.72 determined by gel permeation chromatography experiments. Moreover, the dispersibility of ASPB in water and in the presence of aqueous NaCl solutions of different concentrations was investigated. Results show that the dispersibility of carbon spheres has been enhanced owing to grafted polyelectrolyte chains, while the zeta potential of the particle decreases and its brush layer shrinks upon exposure to sodium ions (Na+).
Collapse
Affiliation(s)
- Na Su
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China;
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200125, China
| |
Collapse
|
4
|
Qin Q, Wang L, Li J, Jia H, Wang J. How to achieve air resistance control in hollow fiber membrane process: Membrane vibration or inner surface modification? WATER RESEARCH 2023; 241:120152. [PMID: 37270945 DOI: 10.1016/j.watres.2023.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
As a factor affecting the efficiency of hollow fiber membrane filtration, air resistance is gradually being discovered. To obtain a better air resistance control strategy, in the study, two representative strategies have been proposed, namely, membrane vibration and inner surface modification, which was achieved by aeration combined with looseness-induced membrane vibration and dopamine (PDA) hydrophilic modification of the inner surface, respectively. The performance of two strategies was based on Fiber Bragg Grating (FBG) sensing technology and ultrasonic phased array (UPA) technology to achieve real-time monitoring. Mathematical model result shows that in hollow fiber membrane modules, the initial appearance of air resistance causes a rapid reduction in filtration efficiency, while this effect diminishes as the air resistance increases. Besides, experimental results show that aeration combined with fiber looseness helps to inhibit air aggregation and accelerate air escape, while inner surface modification enhances the hydrophilicity of inner surface, weakens the air adhesion and increases the drag force of fluid on air bubbles. In the corresponding optimized state, both strategies perform well in optimizing the air resistance control, and the improvement in flux enhancement ability for the two strategies is 26.92 and 34.10%, respectively.
Collapse
Affiliation(s)
- Qingwen Qin
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Material Science and Engineering, TianGong University, Tianjin 300387, China
| | - Lutian Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Material Science and Engineering, TianGong University, Tianjin 300387, China
| | - Juan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
5
|
|
6
|
|
7
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
8
|
Flejszar M, Ślusarczyk K, Chmielarz P, Wolski K, Isse AA, Gennaro A, Wytrwal-Sarna M, Oszajca M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Grobelny A, Grobelny A, Zapotoczny S. Precise Stepwise Synthesis of Donor-Acceptor Conjugated Polymer Brushes Grafted from Surfaces. Int J Mol Sci 2022; 23:ijms23116162. [PMID: 35682845 PMCID: PMC9181774 DOI: 10.3390/ijms23116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Donor-acceptor (D-A) conjugated polymers are promising materials in optoelectronic applications, especially those forming ordered thin films. The processability of such conjugated macromolecules is typically enhanced by introducing bulky side chains, but it may affect their ordering and/or photophysical properties of the films. We show here the synthesis of surface-grafted D-A polymer brushes using alternating attachment of tailored monomers serving as electron donors (D) and acceptors (A) via coupling reactions. In such a stepwise procedure, alternating copolymer brushes consisting of thiophene and benzothiadiazole-based moieties with precisely tailored thickness and no bulky substituents were formed. The utilization of Sonogashira coupling was shown to produce densely packed molecular wires of tailored thickness, while Stille coupling and Huisgen cycloaddition were less efficient, likely because of the higher flexibility of D-A bridging groups. The D-A brushes exhibit reduced bandgaps, semiconducting properties and can form aggregates, which can be adjusted by changing the grafting density of the chains.
Collapse
Affiliation(s)
- Anna Grobelny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Artur Grobelny
- Selvita Services Sp. Z o.o., Bobrzyńskiego 14, 30-348 Kraków, Poland;
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-686-25-30
| |
Collapse
|
10
|
Yang H, Cai S, Jiang Y, Cao Z, Ma W, Gong F, Tao G, Liu C. High‐efficient surface tailoring via reverse atom transfer radical polymerization and reversible addition‐fragmentation chain‐transfer polymerization in an aqueous system initiated by a monocenter redox pair. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Shuipi Cai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Yu Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Fanghong Gong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- School of Mechanical Technology Wuxi Institute of Technology Wuxi Jiangsu China
| | - Guoliang Tao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- Changzhou University Huaide College Changzhou Jiangsu China
| |
Collapse
|
11
|
Smenda J, Wolski K, Chajec K, Zapotoczny S. Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures. Polymers (Basel) 2021; 13:4458. [PMID: 34961009 PMCID: PMC8704565 DOI: 10.3390/polym13244458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
The synthesis of surface-grafted polymers with variable functionality requires the careful selection of polymerization methods that also enable spatially controlled grafting, which is crucial for the fabrication of, e.g., nano (micro) sensor or nanoelectronic devices. The development of versatile, simple, economical, and eco-friendly synthetic strategies is important for scaling up the production of such polymer brushes. We have recently shown that poly (3-methylthienyl methacrylate) (PMTM) and poly (3-trimethylsilyl-2-propynyl methacrylate) (PTPM) brushes with pendant thiophene and acetylene groups, respectively, could be used for the production of ladder-like conjugated brushes that are potentially useful in the mentioned applications. However, the previously developed syntheses of such brushes required the use of high volumes of reagents, elevated temperature, or high energy UV-B light. Therefore, we present here visible light-promoted metal-free surface-initiated ATRP (metal-free SI-ATRP) that allows the economical synthesis of PMTM and PTPM brushes utilizing only microliter volumes of reaction mixtures. The versatility of this approach was shown by the formation of homopolymers but also the block copolymer conjugated brushes (PMTM and PTPM blocks in both sequences) and patterned films using TEM grids serving as photomasks. A simple reaction setup with only a monomer, solvent, commercially available organic photocatalyst, and initiator decorated substrate makes the synthesis of these complex polymer structures achievable for non-experts and ready for scaling up.
Collapse
Affiliation(s)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (J.S.); (K.C.); (S.Z.)
| | | | | |
Collapse
|