1
|
Miranda R, Luciano M, Fiore V, Valenza A. Development of Bio-Based and Recyclable Epoxy Adhesives by Modification with Thermoplastic Polymers. Polymers (Basel) 2025; 17:131. [PMID: 39861204 PMCID: PMC11768196 DOI: 10.3390/polym17020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
This paper deals with the design of novel epoxy adhesives by incorporating thermoplastic polymers such as polyetherimide (PEI) and poly(ε-caprolactone) (PCL) into a bio-based and recyclable epoxy resin, known as Polar Bear. The adhesives were characterized by their mechanical (quasi-static and dynamic) and rheological properties, thermal stability, and adhesion properties in single-lap joints tested at three different temperatures (i.e., -55 °C, 23 °C, 80 °C). The experimental results indicated that low PEI content substantially improved the mechanical performance and toughness of the adhesive, while preserving good processability. Nonetheless, exceeding 3% weight percentage adversely affected the adhesives' mechanical resistance and workability. Conversely, while PCL addition enhanced the adhesives' viscosity, it also decreased mechanical performance. However, its eco-friendliness offers potential for sustainable adhesive applications. It is worth noting that regardless of temperature, the modified adhesives consistently outperformed the commercial epoxy adhesive (DP-460), used as reference, in single-lap shear joint tests. Additionally, both PEI- and PCL-modified epoxy adhesives have demonstrated recyclability through a simple acid-based process, enabling joint disassembly and recycling of the adhesive into a thermoplastic polymer. Overall, the modified adhesives represent a promising eco-friendly, high-performance alternative for structural applications, aligning with sustainable and circular practices.
Collapse
Affiliation(s)
| | | | - Vincenzo Fiore
- Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy; (R.M.); (M.L.); (A.V.)
| | | |
Collapse
|
2
|
Ye G, Huo S, Wang C, Zhang Q, Wang H, Song P, Liu Z. Strong yet Tough Catalyst-Free Transesterification Vitrimer with Excellent Fire-Retardancy, Durability, and Closed-Loop Recyclability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404634. [PMID: 39082404 DOI: 10.1002/smll.202404634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Indexed: 11/08/2024]
Abstract
Despite great advances in vitrimer, it remains highly challenging to achieve a property portfolio of excellent mechanical properties, desired durability, and high fire safety. Thus, a catalyst-free, closed-loop recyclable transesterification vitrimer (TPN1.50) with superior mechanical properties, durability, and fire retardancy is developed by introducing a rationally designed tertiary amine/phosphorus-containing reactive oligomer (TPN) into epoxy resin (EP). Because of strong covalent interactions between TPN and EP and its linear oligomer structure, as-prepared TPN1.50 achieves a tensile strength of 86.2 MPa and a toughness of 6.8 MJ m-3, superior to previous vitrimer counterparts. TPN1.50 containing 1.50 wt% phosphorus shows desirable fire retardancy, including a limiting oxygen index of 35.2% and a vertical burning (UL-94) V-0 classification. TPN1.50 features great durability and can maintain its structure integrity in 1 M HCl or NaOH solution for 100 days. This is because the tertiary amines are anchored within the cross-linked network and blocked by rigid P-containing groups, thus effectively suppressing the transesterification. Owing to its good chemical recovery, TPN1.50 can be used as a promising resin for creating recyclable carbon fiber-reinforced polymer composites. This work offers a promising integrated method for creating robust durable fire-safe vitrimers which facilitate the sustainable development of high-performance polymer composites.
Collapse
Affiliation(s)
- Guofeng Ye
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Cheng Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qi Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
3
|
Wang Z, Lai Y, Xu P, Ma J, Xu Y, Yang X. Synergistic Effects of Liquid Rubber and Thermoplastic Particles for Toughening Epoxy Resin. Polymers (Basel) 2024; 16:2775. [PMID: 39408483 PMCID: PMC11478654 DOI: 10.3390/polym16192775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
This study aims to investigate the toughening effects of rubber and thermoplastic particles on epoxy resin (EP), and to understand the mechanism underlying their synergistic effect. For this purpose, three EP systems were prepared using diglycidyl ether of bisphenol-A (DGEBA) epoxy resin (E-54) and 4,4-Diamino diphenyl methane (Ag-80) as matrix resin, 4,4-diaminodiphenyl sulfone (DDS) as a curing agent, and phenolphthalein poly (aryl ether ketone) particles (PEK-C) and carboxyl-terminated butyl liquid rubber (CTBN) as toughening agents. These systems are classified as an EP/PEK-C toughening system, EP/CTBN toughening system, and EP/PEK-C/CTBN synergistic toughening system. The curing behavior, thermal properties, mechanical properties, and phase structure of the synergistic-toughened EP systems were comprehensively investigated. The results showed that PEK-C did not react with EP, while CTBN reacted with EP to form a flexible block polymer. The impact toughness of EP toughened by PEK-C/CTBN was improved obviously without significantly increasing viscosity or decreasing thermal stability, flexural strength, and modulus, and the synergistic toughening effect was significantly higher than that of the single toughening system. The notable improvement in toughness is believed to be due to the synergistic energy dissipation effect of PEK-C/CTBN.
Collapse
Affiliation(s)
- Zhaodi Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.W.); (Y.L.); (P.X.)
| | - Yuanchang Lai
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.W.); (Y.L.); (P.X.)
| | - Peiwen Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.W.); (Y.L.); (P.X.)
| | - Junchi Ma
- Yangtze River Delta Carbon Fiber and Composites Innovation Center, Changzhou 213000, China;
| | - Yahong Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.W.); (Y.L.); (P.X.)
| | - Xin Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.W.); (Y.L.); (P.X.)
| |
Collapse
|
4
|
Wei J, Yan J, Li S, Li J, Wu Z. Preparation and Application of a Novel Liquid Oxygen-Compatible Epoxy Resin of Fluorinated Glycidyl Amine with Low Viscosity. Polymers (Basel) 2024; 16:2759. [PMID: 39408469 PMCID: PMC11478847 DOI: 10.3390/polym16192759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A liquid oxygen-compatible epoxy resin of fluorinated glycidyl amine (TFEPA) with a low viscosity of 260 mPa·s in a wide range of temperatures, from room temperature to 150 °C, was synthesized and used to decrease the viscosity of phosphorus-containing bisphenol F epoxy resins. And the forming process and application performances of this resin system and its composite were investigated. The viscosity of the bisphenol F resin was decreased from 4925 to 749 mPa·s at 45 °C by mixing with 10 wt.% TFEPA, which was enough for the filament winding process. Moreover, the processing temperature and time windows were increased by 73% and 186%, respectively. After crosslinking, the liquid oxygen compatibility was preserved, and its tensile strength, elastic modulus, and breaking elongation at -196 °C were 133.31 MPa, 6.59 GPa, and 2.36%, respectively, which were similar to those without TFEPA. And the flexural strength and modulus were 276.14 MPa and 7.29 GPa, respectively, increasing by 21.73% in strain energy at flexural breaking, indicating an enhanced toughness derived from TFEPA. Based on this resin system, the flexural strength and toughness of its composite at -196 °C were 862.73 MPa and 6.88 MJ/m3, respectively, increasing by 4.46% and 10.79%, respectively.
Collapse
Affiliation(s)
- Jianing Wei
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jia Yan
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shichao Li
- School of Fiber Engineering and Equipment Technology, Jiangnan University, Wuxi 214122, China
| | - Juanzi Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhanjun Wu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Fulignati S, Di Fidio N, Antonetti C, Raspolli Galletti AM, Licursi D. Challenges and Opportunities in the Catalytic Synthesis of Diphenolic Acid and Evaluation of Its Application Potential. Molecules 2023; 29:126. [PMID: 38202709 PMCID: PMC10779658 DOI: 10.3390/molecules29010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Diphenolic acid, or 4,4-bis(4-hydroxyphenyl)pentanoic acid, represents one of the potentially most interesting bio-products obtainable from the levulinic acid supply-chain. It represents a valuable candidate for the replacement of bisphenol A, which is strongly questioned for its toxicological issues. Diphenolic acid synthesis involves the condensation reaction between phenol and levulinic acid and requires the presence of a Brønsted acid as a catalyst. In this review, the state of the art related to the catalytic issues of its synthesis have been critically discussed, with particular attention to the heterogeneous systems, the reference benchmark being represented by the homogeneous acids. The main opportunities in the field of heterogeneous catalysis are deeply discussed, as well as the bottlenecks to be overcome to facilitate diphenolic acid production on an industrial scale. The regioselectivity of the reaction is a critical point because only the p,p'-isomer is of industrial interest; thus, several strategies aiming at the improvement of the selectivity towards this isomer are considered. The future potential of adopting alkyl levulinates, instead of levulinic acid, as starting materials for the synthesis of new classes of biopolymers, such as new epoxy and phenolic resins and polycarbonates, is also briefly considered.
Collapse
Affiliation(s)
- Sara Fulignati
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Nicola Di Fidio
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Claudia Antonetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Anna Maria Raspolli Galletti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Domenico Licursi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
6
|
Guo H, Wang B, Fu X, Li N, Li G, Zheng G, Wang Z, Liu C, Chen Y, Weng Z, Zhang S, Jian X. A New Strategy to Improve the Toughness of Epoxy Thermosets-By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2878. [PMID: 37049172 PMCID: PMC10096459 DOI: 10.3390/ma16072878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
As high brittleness limits the application of all epoxy resins (EP), here, it can be modified by high-performance thermoplastic poly(ether nitrile ketone) containing phthalazinone structures (PPENK). Therefore, the influence of different PPENK contents on the mechanical, thermal, and low-temperature properties of EP was comprehensively investigated in this paper. The binary blend of PPENK/EP exhibited excellent properties due to homogeneous mixing and good interaction. The presence of PPENK significantly improved the mechanical properties of EP, showing 131.0%, 14.2%, and 10.0% increases in impact, tensile, and flexural strength, respectively. Morphological studies revealed that the crack deflection and bridging in PPENK were the main toughening mechanism in the blend systems. In addition, the PPENK/EP blends showed excellent thermal and low-temperature properties (-183 °C). The glass transition temperatures of the PPENK/EP blends were enhanced by approximately 50 °C. The 15 phr of the PPENK/EP blends had a low-temperature flexural strength of up to 230 MPa, which was 46.5% higher than EP. Furthermore, all blends exhibited better thermal stability.
Collapse
Affiliation(s)
- Hongjun Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
- Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
| | - Bing Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Fu
- Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
| | - Nan Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
| | - Guiyang Li
- Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
| | - Guodong Zheng
- Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
| | - Zaiyu Wang
- AVIC Jiangxi Hongdu Aviation Industry Group Company Ltd., Nanchang 330024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
| | - Yousi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
| | - Zhihuan Weng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Technology Innovation Center of High Performance Resin Materials, Dalian 116024, China
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Lu C, Wang X, Hua W, Wang S, Wang S, Wang J, Yong Q, Chu F. Fabrication of cellulose/plant oil based flexible epoxy thermoset with excellent
UV
‐blocking performance. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chuanwei Lu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
- Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing China
| | - Xinyu Wang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Wenhui Hua
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Shan Wang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Shaojun Wang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Jifu Wang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
- Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing China
| | - Qiang Yong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Fuxiang Chu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China
- Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing China
| |
Collapse
|
8
|
Mechanism of Morphology Development in HDGEBA/PAMS Hybrid Thermosets: Monte Carlo Simulation and LSCM Study. Polymers (Basel) 2022; 14:polym14245375. [PMID: 36559741 PMCID: PMC9788219 DOI: 10.3390/polym14245375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Reactive combinations of aliphatic epoxy resins and functional polysiloxanes form a class of hybrid thermosetting materials with properties that may come from both the organic and the inorganic phases. The two typically immiscible phases form a suspension whose morphology, composition, and thermal properties vary with curing time. The aim of this research was to elucidate the mechanism by which morphology changed with time and to simulate it through Metropolis-Monte Carlo. The selected system was hydrogenated epoxy (HDGEBA) and a synthetic polyaminosiloxane (PAMS). It was studied by DSC, FTnIR, gel point, viscometry, and in-situ laser scanning confocal microscopy. A mechanism for morphology generation was proposed and simulated, exploring a wide range of values of the "a priori" relevant variables. The essential features were captured by simulations with a reasonable agreement with experimental data. However, the complete process was more complex than the geometrical approach of the simulation. The main deviations that were found and qualitatively explained are: (i) the induction period on the rate of coalescence, and (ii) PAMS-rich domain average size increases faster than predictions.
Collapse
|
9
|
Luo X, Li Y, Li S, Liu X. Enhancement of Mechanical Properties and Bonding Properties of Flake-Zinc-Powder-Modified Epoxy Resin Composites. Polymers (Basel) 2022; 14:polym14235323. [PMID: 36501717 PMCID: PMC9740281 DOI: 10.3390/polym14235323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
As a typical brittle material, epoxy resin cannot meet its application requirements in specific fields by only considering a single toughening method. In this paper, the effects of carboxyl-terminated polybutylene adipate (CTPBA) and zinc powder on the mechanical properties, adhesion properties, thermodynamic properties and medium resistance of epoxy resin were studied. A silane coupling agent (KH-550) was used to modify zinc powder. It was found that KH-550 could significantly improve the mechanical properties and bonding properties of epoxy resin, and the modification effect of flake zinc powder (f-Zn) was significantly better than that of spherical zinc powder (s-Zn). When the addition amount of f-Zn was 5 phr, the tensile shear strength and peel strength of the composites reached a maximum value of 13.16 MPa and 0.124 kN/m, respectively, which were 15.95% and 55% higher than those without filler. The tensile strength and impact strength reached a maximum value of 43.09 MPa and 7.09 kJ/m2, respectively, which were 40.54% and 91.11% higher than those without filler. This study provides scientific support for the preparation of f-Zn-modified epoxy resin.
Collapse
Affiliation(s)
| | | | | | - Xin Liu
- Correspondence: (S.L.); (X.L.)
| |
Collapse
|
10
|
Wang B, Li N, Bao Q, Liu D, Guo H, Li G, Zheng G, Zhang G, Qiao Y, Weng Z, Jian X. Toughening and strengthening of low-temperature resistant epoxy resins by introducing high-performance thermoplastic resin with phthalazinone structure. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|