1
|
Shi J, Hu Y, Li S, Xiao W, Yang Y, Ji J. Electro-Conductive Modification of Polyvinylidene Fluoride Membrane for Electrified Wastewater Treatment: Optimization and Antifouling Performance. MEMBRANES 2024; 15:1. [PMID: 39852242 PMCID: PMC11767159 DOI: 10.3390/membranes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance. The anti-fouling property of the conductive membranes was analyzed using model pollutants. The results indicate that when the concentrations of the pyrrole, BVIMBF4, and FeCl3·6H2O are 0.9 mol/L, 4.8 mmol, and 0.8 mol/L, respectively, the electrical resistance of the PVDF-CM is 93 Ω/sq with the water contact angle of 31°, demonstrating good conductivity and hydrophilicity. Batch membrane filtration experiments coupled with negative voltage indicated that when an external voltage of 2.0 V is applied, membrane fouling rates for the conductive membrane filtering BSA and SA solutions are reduced by 17.7% and 17.2%, respectively, compared to the control (0 V). When an external voltage of 0.5 V is applied, the membrane fouling rate for the conductive membrane filtering HA solution is reduced by 72.6%. This study provides a valuable reference for the efficient preparation of conductive membranes for cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Jinzhuo Shi
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yisong Hu
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Songhua Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Wenqian Xiao
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yuan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Jiayuan Ji
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
2
|
Rando G, Sfameni S, Milone M, Mezzi A, Brucale M, Notti A, Plutino MR. Smart pillar[5]arene-based PDMAEMA/PES beads for selective dye pollutants removal: design, synthesis, chemical-physical characterization, and adsorption kinetic studies. CHEMSUSCHEM 2024; 17:e202301502. [PMID: 38154027 DOI: 10.1002/cssc.202301502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
This article reports on the synthesis of an innovative smart polymer, P5-QPDMAEMA, opportunely developed with the aim of combining the responsiveness of PDMAEMA polymer and the host-guest properties of covalently linked pillar[5]arenes. Thanks to a traditional Non-Induced Phase Separation (NIPS) process performed at various coagulation pH, the blending of P5-QPDMAEMA with polyethersulfone gave rise to the formation of functional beads for the removal of organic dyes in water. Adsorption tests are carried out on all the produced blend-based beads by employing two representative dyes, the cationic methylene blue (MB), and the anionic methyl orange (MO). In particular, the P5-QPDMAEMA based beads, prepared at acidic pH, featured the best MO removal rate (i. e., 91.3 % after 150 minutes starting from a 20 mg ⋅ L-1 solution) and a high selectivity towards the removal of the selected anionic dye. Based on the adsorption kinetics and isotherm calculations, the pseudo-first order and Freundlich models were shown to be the most suitable to describe the MO adsorption behavior, achieving a maximum adsorption capacity of 21.54 mg ⋅ g-1. Furthermore, zwitterionic beads are obtained by a post-functionalization of the PDMAEMA and the P5-QPDMAEMA based beads, to test their removal capability towards both anionic and cationic dyes, as shown.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Milone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via Salaria Km 29.3, 00015, Monterotondo stazione, Rome, Italy
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via P. Gobetti 101, 40129, Bologna, Italy
| | - Anna Notti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
3
|
Ampawan S, Dairoop J, Keawbanjong M, Chinpa W. A floating biosorbent of polylactide and carboxylated cellulose from biomass for effective removal of methylene blue from water. Int J Biol Macromol 2024; 266:131354. [PMID: 38574933 DOI: 10.1016/j.ijbiomac.2024.131354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
A floating adsorbent bead was prepared from polylactide (PLA) and maleic anhydride (MAH)-modified cellulose in a one-pot process (OP bead). Cellulose was extracted from waste lemongrass leaf (LGL) and modified with MAH in the presence of dimethylacetamide (DMAc). PLA was then added directly into the system to form sorbent beads by a phase separation process that reused unreacted MAH and DMAc as a pore former and a solvent, respectively. The chemical modification converted cellulose macrofibres (55.1 ± 31.5 μm) to microfibers (8.8 ± 1.5 μm) without the need for grinding. The OP beads exhibited more and larger surface pores and greater thermal stability than beads prepared conventionally. The OP beads also removed methylene blue (MB) more effectively, with a maximum adsorption capacity of 86.19 mg⋅g-1. The adsorption of MB on the OP bead fitted the pseudo-second order and the Langmuir isotherm models. The OP bead was reusable over five adsorption cycles, retaining 88 % of MB adsorption. In a mixed solution of MB and methyl orange (MO), the OP bead adsorbed 96 % of the cationic dye MB while repelling the anionic dye MO. The proposed method not only reduced time, energy and chemical consumption, but also enabled the fabrication of a green, effective and easy-to-use biosorbent.
Collapse
Affiliation(s)
- Sasimaporn Ampawan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jiratchaya Dairoop
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mallika Keawbanjong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Watchanida Chinpa
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
4
|
Shabeeb KM, Noori WA, Abdulridha AA, Majdi HS, Al-Baiati MN, Yahya AA, Rashid KT, Németh Z, Hernadi K, Alsalhy QF. Novel partially cross-linked nanoparticles graft co-polymer as pore former for polyethersulfone membranes for dyes removal. Heliyon 2023; 9:e21958. [PMID: 38034800 PMCID: PMC10682142 DOI: 10.1016/j.heliyon.2023.e21958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
A newly developed water-soluble polymeric nano-additive termed "partially cross-linked nanoparticles graft copolymer (PCLNPG)" has been successfully synthesized and harnessed as a pore former for modifying a polyethersulfone ultrafiltration membrane for dyes removal. The PCLNPG content was varied in the PES polymeric matrix aiming to scrutinize its impact on membrane surface characteristics, morphological structure, and overall performance. Proposed interaction mechanism between methylene blue (MB), methyle orange (MO), and malachite green (MG) dyes with PES membrane was presented as well. Hydrophilicity and porosity of the novel membrane increased by 18 and 17 %, respectively, when manufactured with a 3 Wt. % PCLNPG, according to the findings. Besides this, the disclosed increased porosity, rather than the hydrophilic properties of the water-soluble PCLNPG, was the principal cause of the diminished contact angle. Meanwhile, raising the PCLNPG content in the prepared membrane made worthy shifts in its structure. A sponge-like region was materialized near the bottom surface as well. The membrane's pure water flux (PWF) synthesized with 3 Wt.% PCLNPG recorded 628 LMH, which is estimated 3.95 fold the pristine membrane. MG, MB, and MO dyes were rejected by 90.6, 96.3, and 97.87 %, respectively. These findings showed that the performance characteristics of the PES/PCLNPG membrane make it a potentially advantageous option to treat the textile wastewater.
Collapse
Affiliation(s)
- Kadhum M. Shabeeb
- Department of Materials Engineering, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Wallaa A. Noori
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | | | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Mohammad N. Al-Baiati
- Department of Chemistry, College of Education for Pure Sciences, University of Kerbala, 56001, Kerbala, Iraq
| | - Ali A. Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Zoltán Németh
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc, Hungary
| | - Klara Hernadi
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc, Hungary
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| |
Collapse
|
5
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
6
|
Su YL, Beltsios KG, Su JF, Cheng LP. Preparation of poly(vinyl alcohol-co-ethylene) hollow fiber membranes for high-flux ultrafiltration applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Aljanabi AAA, Mousa NE, Aljumaily MM, Majdi HS, Yahya AA, AL-Baiati MN, Hashim N, Rashid KT, Al-Saadi S, Alsalhy QF. Modification of Polyethersulfone Ultrafiltration Membrane Using Poly(terephthalic acid-co-glycerol-g-maleic anhydride) as Novel Pore Former. Polymers (Basel) 2022; 14:polym14163408. [PMID: 36015666 PMCID: PMC9414477 DOI: 10.3390/polym14163408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, poly terephthalic acid-co-glycerol-g-maleic anhydride (PTGM) graft co-polymer was used as novel water-soluble pore formers for polyethersulfone (PES) membrane modification. The modified PES membranes were characterized to monitor the effect of PTGM content on their pure water flux, hydrophilicity, porosity, morphological structure, composition, and performance. PTGM and PES/PTGM membranes were characterized by field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle (CA). The results revealed that the porosity and hydrophilicity of the fabricated membrane formed using a 5 wt.% PTGM ratio exhibited an enhancement of 20% and 18%, respectively. Similarly, upon raising the PTGM ratio in the casting solution, a more porous with longer finger-like structure was observed. However, at optimum PTGM content (i.e., 5%), apparent enhancements in the water flux, bovine serum albumin (BSA), and sodium alginate (SA) retention were noticed by values of 203 L/m2.h (LMH), 94, and 96%, respectively. These results illustrated that the observed separation and permeation trend of the PES/PTGM membrane may be a suitable option for applications of wastewater treatment. The experimental results suggest the promising potential of PTGM as a pore former on the membrane properties and performance.
Collapse
Affiliation(s)
- Ali A. Abbas Aljanabi
- Al-Mussaib Technical College, Al-Furat Al-Awsat Technical University, Babylon 51009, Iraq
| | - Noor Edin Mousa
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Mustafa M. Aljumaily
- Department of Civil Engineering, Al-Maarif University College, Al-Ramadi 31001, Iraq
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Ali Amer Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Mohammad N. AL-Baiati
- Department of Chemistry, College of Education for Pure Sciences, University of Kerbala, Holly Kerbala 56001, Iraq
| | - Noor Hashim
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Khaild T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Saad Al-Saadi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Correspondence: (S.A.-S.); (Q.F.A.)
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
- Correspondence: (S.A.-S.); (Q.F.A.)
| |
Collapse
|
8
|
Novel Water-Soluble Poly(terephthalic-co-glycerol-g-fumaric acid) Copolymer Nanoparticles Harnessed as Pore Formers for Polyethersulfone Membrane Modification: Permeability–Selectivity Tradeoff Manipulation. WATER 2022. [DOI: 10.3390/w14091507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work presents poly(terephthalic-co-glycerol-g-fumaric acid) (TGF) as a novel water-soluble polymeric nano-additive for the modification of a polyethersulfone ultrafiltration membrane. The TGF was harnessed as a pore former, aiming to improve the membrane surface porosity and hydrophilicity. Modified membranes were characterized to observe the influence of varying the TGF content on their hydrophilicity, porosity, morphological structure, and composition, as well as their entire performance. The results disclosed that porosity and hydrophilicity of the modified membrane prepared using 4 wt.% TGF content recorded an enhancement by 24% and 38%, respectively. Herein, the lower contact angle was mainly a reflection of the improved porosity, but not of the hydrophilic nature of water-soluble TGF. Furthermore, upon increasing the TGF content in the polymeric matrix, a more porous structure with longer finger-like micropores was formed. Moreover, a sponge-like layer clearly appeared near the bottom surface. Nevertheless, at optimum TGF content (4%), a clear enhancement in the water flux and BSA retention was witnessed by values of 298 LMH and 97%, respectively. These results demonstrate that the obtained permeation and separation behavior of the PES/TGF membrane could stand as a promising choice for water and wastewater treatment applications.
Collapse
|
9
|
The Application of a Modified Polyacrylonitrile Porous Membrane in Vanadium Flow Battery. MEMBRANES 2022; 12:membranes12040388. [PMID: 35448358 PMCID: PMC9026392 DOI: 10.3390/membranes12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
Vanadium flow battery (VFB) is one of the most promising candidates for large-scale energy storage. A modified polyacrylonitrile (PAN) porous membrane is successfully applied in VFB. Herein, a simple solvent post-processing method is presented to modify PAN porous membranes prepared by the traditional nonsolvent induced phase separation (NIPS) method. In the design, polymer PAN is chosen as the membrane material owing to its low cost and high stability. The large-size pores from NIPS method are well optimized by the solvent swelling and shrinking during the solvent post-processing. Meanwhile, the interconnectivity of pores is maintained well. As a result, the ion selectivity of PAN porous membranes is dramatically improved, and the CE of a VFB with PAN porous membranes rises from 68% to 93% after the solvent post-processing process. A VFB with the modified PAN porous membranes is capable of delivering a limiting current density of 900 mA cm−2, and a high peak power density of 650 mW cm−2, which is very competitive among the various flow batteries.
Collapse
|