1
|
Luo Y, Li X, Zhang X, Ren H, Shi H, Yang Y, Liu C, Xu B, Tian W, Wang G. Novel AIE-Active Polyarylethersulfone Polymers Incorporating Tetraphenylethene for Enhanced Fluorescence. Macromol Rapid Commun 2025:e2401056. [PMID: 39838782 DOI: 10.1002/marc.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Aggregation-induced emission (AIE) materials have gained significant attention for their unique fluorescence enhancement in the aggregated state. However, combining rigid polymers with AIE molecules to enhance luminescent properties remains to be investigated. In this work, two novel AIE-active polyarylethersulfone (PAES) derivatives are synthesized by incorporating tetraphenylethene (TPE) into either the side chain or main chain of PAES, resulting in side-chain polyarylethersulfone-tetraphenylethene (PAES-TPE) and main-chain polyarylethersulfone-tetraphenylethene (m-PAES-TPE), respectively. These derivatives are designed to investigate the influence of the rigid polymer backbone on the AIE properties of TPE. The incorporation of TPE into PAES resulted in a notable redshift in fluorescence emission compared to pure TPE. Notably, m-PAES-TPE50%, a polymer with 50% molar content of TPE, exhibited a fluorescence quantum yield to 57.43%, more than twice that of TPE powder. Thermal analysis showed that both PAES-TPE and m-PAES-TPE have excellent thermal stability and temperature-dependent fluorescence. Additionally, these materials are processed into hydrophobic nanoparticles, and in vitro experiments demonstrated good fluorescence properties and biocompatibility for cancer cell bioimaging. This work highlights the potential of rigid AIE-active PAES derivatives for advanced bioimaging applications.
Collapse
Affiliation(s)
- Yuchao Luo
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130012, China
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Xiang Li
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Xinze Zhang
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Haoxuan Ren
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Haotian Shi
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Yanchao Yang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Chunbao Liu
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130012, China
| | - Bin Xu
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Wenjing Tian
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Guibin Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Zong Y, Gao RT, Liu N, Luo J, Chen Z, Wu ZQ. Helical Polyallenes: From Controlled Synthesis to Distinct Properties. Macromol Rapid Commun 2025; 46:e2400671. [PMID: 39388665 DOI: 10.1002/marc.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Polyallenes with appropriate pendants can form stable helices and exhibit significant optical activity. These helical polyallenes contain reactive double bonds that allow for further functionalization, making them a class of chiral functional materials with broad application prospects. This review article delves into the intricacies of synthesizing well-defined helical polyallenes through controlled synthetic methodologies, including helix-sense selective living polymerization, regioselective and asymmetric living polymerization, and one-pot block copolymerization of allenes with aryl monomers. The systemically outlined characteristics of the resulting helical polyallenes and related copolymers are summarized include their unique chiroptical properties, stimuli-responsiveness, helix-induced chiral self-assembly, and circularly polarized luminescence (CPL). Additionally, current challenges and future perspectives in the research of controlled synthesis, functionalities, and applications of helical polyallenes are discussed in detail.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jing Luo
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230009, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
3
|
Li GW, Wang XJ, Shi SH, Liu LT, Li JQ, Sun H, Wu ZQ, Lei X. Polyarylisocyanides Derived from an Alkyne-Pd(II) Catalyst as Robust Alignment Media with Excellent Enantiodiscimination. Anal Chem 2023; 95:18850-18858. [PMID: 38091507 DOI: 10.1021/acs.analchem.3c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The development of chiral alignment media for measuring anisotropic NMR parameters provides an opportunity to determine the absolute configuration of chiral molecules without the need for derivatization. However, chiral alignment media with a high and robust enantiodiscriminating property for a wide range of chiral molecules are still scarce. In this study, we synthesized cholesterol-end-functionalized helical polyisocyanides from a chiral monomer using a cholesterol-based alkyne-Pd(II) initiator. These stereoregular polyisocyanides form stable and weak anisotropic lyotropic liquid crystals (LLCs) in dichloromethane systems, exhibiting highly optical activities in both single left- and right-handed helices. The preparation process of the media was straightforward, and the aligning property of the LLCs could be controlled by adjusting the concentration and temperature. Using the chiral polyisocyanides, we extracted the residual dipolar coupling for an enantiomeric pair of isopinocampheol (IPC), as well as a number of pharmaceutical molecules, demonstrating excellent enantiodiscriminating properties for a broad range of chiral compounds.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Shuai-Hua Shi
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Lan-Tao Liu
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Jia-Qian Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Han Sun
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinxiang Lei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemi-cal Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
4
|
Jiang N, Li KX, Xie W, Zhang SR, Li X, Hu Y, Xu YH, Liu XM, Bryce MR. Multicolor Luminescence of a Polyurethane Derivative Driven by Heat/Light-Induced Aggregation. Macromolecules 2023; 56:7721-7728. [PMID: 37841531 PMCID: PMC10569097 DOI: 10.1021/acs.macromol.3c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Indexed: 10/17/2023]
Abstract
The study of aggregate formation and its controllable effect on luminescence behavior has a far-reaching influence in establishing a universal aggregation photophysical mechanism. In this paper, we obtained clusters with different extents of aggregation by heat-induced or light-triggered aggregation of a new polyurethane derivative (PUE). The controllable regulation of multicolor fluorescence of a single (nondoped) polymeric material is realized. The luminescence behavior of PUE varies with microscopic control of the aggregation structure. Compared with the powder state, the enhanced atom-atom and group-group interactions of PUE-gel effectively limit the nonradiative transitions in the excited state and result in a red-shift in emission. This work avoids complex organic synthesis and demonstrates a simple strategy to induce aggregation and regulate the emitting color of macromolecules, providing a template for developing new materials for multicolor fluorescence. In addition, a pattern was constructed with encryption, anticounterfeiting, and information transmission functions which provide a proof-of-concept demonstration of the practical potential of PUE as a smart material.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Wei Xie
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Shu-Ran Zhang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yue Hu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Xing-Man Liu
- School
of Chemistry and Chemical Engineering, Ningxia
University, Yinchuan 750021, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
5
|
Rong S, Shi W, Zhang S, Wang X. Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Super‐Aligned Assemblies of Sub‐1 nm Nanowires. Angew Chem Int Ed Engl 2022; 61:e202208349. [DOI: 10.1002/anie.202208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shujian Rong
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300387 China
| | - Simin Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Steroid-Based Liquid Crystalline Polymers: Responsive and Biocompatible Materials of the Future. CRYSTALS 2022. [DOI: 10.3390/cryst12071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid-based liquid crystal polymers and co-polymers have come a long way, with new and significant advances being made every year. This paper reviews some of the recent key developments in steroid-based liquid crystal polymers and co-polymers. It covers the structure–property relationship between cholesterol and sterol-based compounds and their corresponding polymers, and the influence of chemical structure and synthesis conditions on the liquid crystalline behaviour. An overview of the nature of self-assembly of these materials in solvents and through polymerisation is given. The role of liquid crystalline properties in the applications of these materials, in the creation of nano-objects, drug delivery and biomedicine and photonic and electronic devices, is discussed.
Collapse
|
7
|
Duan H, Zhu C, Qi D, Li J. Circularly polarized luminescence of polymers with coil to helix transformation in water system triggered via metal coordination. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Rong S, Shi W, Zhang S, Wang X. Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Super‐aligned Assemblies of Sub‐1 nm Nanowires. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shujian Rong
- Tsinghua University Department of Chemistry Chemistry CHINA
| | - Wenxiong Shi
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Simin Zhang
- Tsinghua University Department of Chemistry Chemistry CHINA
| | - Xun Wang
- Tsinghua University Department of Chemistry Haidian District, Chengfu Road 100084 Beijing CHINA
| |
Collapse
|