1
|
Wang Y, Yao A, Zhong H, Mo Y, Zhang H, Shang J, Lan J, Fan W, Chen X, Lin S. Silver Nanoparticle-Decorated Cellulose Nanocrystal Reinforced Ionic Polymer Hydrogel With High Conductivity and Environmental Tolerance for Multifunctional Sensing and Emergency Alarm System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405826. [PMID: 39506427 DOI: 10.1002/smll.202405826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Indexed: 11/08/2024]
Abstract
Conductive hydrogels hold great promise for flexible electronics. However, the simultaneous achievement of satisfactory mechanical strength, outstanding environmental tolerance, high sensitivity, and multiple sensing applications in a single conductive hydrogel remains a significant challenge. Herein, ionic polymer-based hydrogels with a double conductive network consisting of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (DMC), 2-hydroxyethyl acrylate (HEA) and silver nanoparticle decorated cellulose nanocrystal (CNC@Ag) are prepared by a facile one-pot method. The resultant hydrogel (CDH) exhibits high stretchability, satisfactory self-adhesion, excellent environment tolerance (from -60 to 60 °C), long-term stability (60 days), effective UV-shielding, and strong antibacterial properties. Significantly, the CDH hydrogel displays high conductivity and rapid response due to its double conductive network of ionic polymer and CNC@Ag. Therefore, the CDH-assembled sensor can accurately detect signals from both strain and pressure deformations, exhibiting outstanding sensitivity and reliability for human motion detection, signal transmission, object recognition, and tactile sensing. More interestingly, collaborating with a development board, the CDH-based sensor can be developed as an emergency alarm to realize prompt alarms in dangerous situations. Overall, this work presents a strategy for the fabrication of conductive hydrogel with remarkable properties, making it possible for multifunctional sensing applications in wearable electronics.
Collapse
Affiliation(s)
- Yafang Wang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Anrong Yao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Hualan Zhong
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yunbo Mo
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Han Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiaojiao Shang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Wuhou Fan
- High-tech Organic Fibers Key Laboratory of Sichuan Province, Sichuan Textile Scientific Research Institute Co., Ltd, Chengdu, 610083, P. R. China
| | - Xiaotian Chen
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
2
|
Rehan M, Emam EAM, Emam HE. Immobilization of silver nanoparticles and silver iodide within bamboo fabrics for wastewater treatment. Sci Rep 2025; 15:11050. [PMID: 40169653 PMCID: PMC11962099 DOI: 10.1038/s41598-025-93188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Pathogenic microorganisms and dyes are the main sources of water pollution. These pollutants are extremely hazardous and may harm aquatic life and human health. As a result, removing these pollutants is critical in assessing contamination risks and mitigating potential health hazards. To effectively remove pathogenic microorganisms and dyes from wastewater, an efficient multi-functional material was designed based on AgI, Ag NPs, and Ag NPs@AgI immobilized on bamboo fabrics as a support substrate. The water disinfection aptitude of the modified bamboo fabrics was evaluated against different microorganisms. The results showed that the Ag NPs@AgI@bamboo showed excellent antibacterial activity against S. aureus (88%) and E. coli (90%) as well as perfect antifungal activity against C. albicans (82%). Methylene blue (MB) was used as a pollutant model to test the catalytic and photocatalytic activity of modified bamboo fabrics. The results show that Ag NPs@AgI@bamboo was highly efficient in removing the MB dye via reduction (90%) after 60 min or photodegradation (93%) after 6 h of UV light irradiation. The pseudo-first-order kinetic study shows that Ag NPs@AgI@bamboo possessed outstanding catalytic reduction and photocatalytic degradation activities toward MB.
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., 12622, Dokki, Giza, Egypt.
| | - El-Amir M Emam
- Faculty of Applied Arts, Textile Printing, Dyeing and Finishing Department, Helwan University, 11795, Cairo, Egypt
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., 12622, Dokki, Giza, Egypt.
| |
Collapse
|
3
|
Yang L, Wang H, Yang Y, Li Y. Self-healing cellulose-based hydrogels: From molecular design to multifarious applications. Carbohydr Polym 2025; 347:122738. [PMID: 39486967 DOI: 10.1016/j.carbpol.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Self-healing cellulose-based hydrogels (SHCHs) exhibit wide-ranging potential applications in the fields of biomedicine, environmental management, energy storage, and smart materials due to their unique physicochemical properties and biocompatibility. This review delves into the molecular design principles, performance characteristics, and diverse applications of SHCHs. Firstly, the molecular structure and physicochemical properties of cellulose are analyzed, along with strategies for achieving self-healing properties through molecular design, with particular emphasis on the importance of self-healing mechanisms. Subsequently, methods for optimizing the performance of SHCHs through chemical modification, composite reinforcement, stimulus responsiveness, and functional integration technologies are discussed in detail. Furthermore, applications of SHCHs in drug delivery, tissue engineering, wound healing, smart sensing, supercapacitors, electronic circuits, anti-counterfeiting systems, oil/water separation, and food packaging are explored. Finally, future research directions for SHCHs are outlined, including the innovative development of new SHCHs, in-depth elucidation of cooperative strengthening mechanisms, a further expansion of application scope, and the establishment of intelligent systems. This review provides researchers with a comprehensive overview of SHCHs and serves as a reference and guide for future research and development.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Yanpeng Li
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| |
Collapse
|
4
|
Chen D, Bao M, Ge H, Chen X, Ma W, Wang Z, Li Y. A Hydrogel-coated Wood Membrane with Intelligent Oil Pollution Detection for Emulsion Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401719. [PMID: 38874065 DOI: 10.1002/smll.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Considering the potential threats posed by oily wastewater to the ecosystem, it is urgently in demand to develop efficient, eco-friendly, and intelligent oil/water separation materials to enhance the safety of the water environment. Herein, an intelligent hydrogel-coated wood (PPT/PPy@DW) membrane with self-healing, self-cleaning, and oil pollution detection performances is fabricated for the controllable separation of oil-in-water (O/W) emulsions and water-in-oil (W/O) emulsions. The PPT/PPy@DW is prepared by loading polypyrrole (PPy) particles on the delignified wood (DW) membranes, further modifying the hydrogel layer as an oil-repellent barrier. The layered porous structure and selective wettability endow PPT/PPy@DW with great separation performance for various O/W emulsions (≥98.69% for separation efficiency and ≈1000 L m-2 h-1 bar-1 for permeance). Notably, the oil pollution degree of PPT/PPy@DW can be monitored in real-time based on the changed voltage generated during O/W emulsion separation, and the oil-polluted PPT/PPy@DW can be self-cleaned by soaking in water to recover its separation performance. The high affinity of PPT/PPy@DW for water makes it effective in trapping water from the mixed surfactant-stabilized W/O emulsions. The prepared eco-friendly and low-cost multifunctional hydrogel wood membrane shows promising potential in on-demand oil/water separation and provides new ideas for the functional improvement of new biomass oil/water separation membrane materials.
Collapse
Affiliation(s)
- Dafan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, P. R. China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Hongwei Ge
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
5
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Wang Y, Liu H, Yu J, Liao H, Yang L, Ren E, Lin S, Lan J. Ionic Conductive Cellulose-Based Hydrogels with Superior Long-Lasting Moisture and Antifreezing Features for Flexible Strain Sensor Applications. Biomacromolecules 2024; 25:838-852. [PMID: 38164823 DOI: 10.1021/acs.biomac.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nowadays, wearable devices derived from flexible conductive hydrogels have attracted enormous attention. Nevertheless, the utilization of conductive hydrogels in practical applications under extreme conditions remains a significant challenge. Herein, a series of inorganic salt-ion-enhanced conductive hydrogels (HPE-LiCl) consisting of hydroxyethyl cellulose, hydroxyethyl acrylate, lithium chloride, and ethylene glycol/water binary solvent were fabricated via a facile one-pot method. Apart from outstanding self-adhesion, high stretchability, and remarkable fatigue resistance, the HPE-LiCl hydrogels possessed especially excellent antifreezing and long-lasting moisture performances, which could maintain satisfactory flexibility and electric conductivity over extended periods of time, even in challenging conditions such as extremely low temperatures (as low as -40 °C) and high temperatures (as high as 80 °C). Consequently, the HPE-LiCl-based sensor could timely and accurately monitor various human motion signals even in adverse environments and after long-term storage. Hence, this work presents a facile strategy for the design of long-term reliable hydrogels as smart strain sensors, especially used in extreme environments.
Collapse
Affiliation(s)
- Yafang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Hongyu Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jincheng Yu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongjiang Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
7
|
Guan H, Li R, Lian R, Cui J, Ou M, Liu L, Chen X, Jiao C, Kuang S. A biomimetic design for efficient petrochemical spill disposal: CoFe-PBA modified superhydrophobic melamine sponge with mechanical/chemical durability and low fire risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132041. [PMID: 37487334 DOI: 10.1016/j.jhazmat.2023.132041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Due to frequent petrochemical spills, environmental pollution and the threat of secondary marine fires have arisen, necessitating an urgent need for petrochemical spill treatment strategies with high-performance oil-water separation capabilities. To address the challenges of poor durability, instability in hydrophobic conditions, and difficulty in absorbing high-viscosity crude oil associated with hydrophobic absorbent materials, the authors of this study took inspiration from the unique micro and nanostructures of springtails' water-repellent skin. We engineered a superhydrophobic melamine sponge using interfacial assembly techniques designated as Si@PBA@PDA@MS. This material demonstrated improved mechanical and chemical durability, enhanced photothermal performance, and reduced fire risk. The metal-organic framework (MOF)-derived cobalt-iron Prussian blue analog (CoFe-PBA) was firmly anchored to the sponge framework by the chelation of cobalt ions using polydopamine (PDA). The results demonstrated that Si@PBA@PDA@MS demonstrated excellent superhydrophobicity (WCA=163.5°) and oil absorption capacity (53.4-97.5 g/g), maintaining high durability even after 20 cycles of absorption-squeezing. Additionally, it could still exhibit excellent mechanical properties, hydrophobic stability, and absorption performance across a wide temperature range (0-100 °C), pH range (1-14), and high compression strength (ε = 80%), with excellent mechanical/chemical durability. Furthermore, Si@PBA@PDA@MS demonstrated remarkable photothermal performance and low fire risk, offering efficient, safe, and sustainable practical value for effective petrochemical spill treatment.
Collapse
Affiliation(s)
- Haocun Guan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Rongjia Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Richeng Lian
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jiahui Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Mingyu Ou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lei Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xilei Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Chuanmei Jiao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
8
|
Wang C, Liu Y, Han H, Wang D, Chen J, Zhang R, Zuo S, Yao C, Kang J, Gui H. C,N co-doped TiO 2 hollow nanofibers coated stainless steel meshes for oil/water separation and visible light-driven degradation of pollutants. Sci Rep 2023; 13:5716. [PMID: 37029148 PMCID: PMC10082082 DOI: 10.1038/s41598-023-28992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 04/09/2023] Open
Abstract
Complex pollutants are discharging and accumulating in rivers and oceans, requiring a coupled strategy to resolve pollutants efficiently. A novel method is proposed to treat multiple pollutants with C,N co-doped TiO2 hollow nanofibers coated stainless steel meshes which can realize efficient oil/water separation and visible light-drove dyes photodegradation. The poly(divinylbenzene-co-vinylbenzene chloride), P(DVB-co-VBC), nanofibers are generated by precipitate cationic polymerization on the mesh framework, following with quaternization by triethylamine for N doping. Then, TiO2 is coated on the polymeric nanofibers via in-situ sol-gel process of tetrabutyl titanate. The functional mesh coated with C,N co-doped TiO2 hollow nanofibers is obtained after calcination under nitrogen atmosphere. The resultant mesh demonstrates superhydrophilic/underwater superoleophobic property which is promising in oil/water separation. More importantly, the C,N co-doped TiO2 hollow nanofibers endow the mesh with high photodegradation ability to dyes under visible light. This work draws an affordable but high-performance multifunctional mesh for potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Chunyu Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingze Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Desheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jieyi Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Renzhi Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shixiang Zuo
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Chao Yao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Jian Kang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
9
|
Batool M, B. Albargi H, Ahmad A, Sarwar Z, Khaliq Z, Qadir MB, Arshad SN, Tahir R, Ali S, Jalalah M, Irfan M, Harraz FA. Nano-Silica Bubbled Structure Based Durable and Flexible Superhydrophobic Electrospun Nanofibrous Membrane for Extensive Functional Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1146. [PMID: 37049240 PMCID: PMC10096561 DOI: 10.3390/nano13071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.
Collapse
Affiliation(s)
- Misbah Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Hasan B. Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zahid Sarwar
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan;
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan;
| | - Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Sultan Ali
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| |
Collapse
|
10
|
Chang H, Zhao H, Qu F, Yan Z, Liu N, Lu M, Liang Y, Lai B, Liang H. State-of-the-art insights on applications of hydrogel membranes in water and wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Yu J, He Y, Wang Y, Li S, Tian S. Ethylenediamine-oxidized sodium alginate hydrogel cross-linked graphene oxide nanofiltration membrane with self-healing property for efficient dye separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|