1
|
Liu O, Chen P, Xiao Q, Yue C, Huang Y, Ye G. Density functional theory guide for copolymerization mechanism between allyl radical with radicalophile: photo-driven radical mediated [3 + 2] cyclization. J Mol Model 2024; 30:306. [PMID: 39134770 DOI: 10.1007/s00894-024-06104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
CONTEXT The challenge of activating inert allyl monomers for polymerization has persisted, prompting our proposal of the photo-driven radical mediated [3 + 2] cyclization reaction (PRMC). This innovative approach significantly expedites the homopolymerization of multi-allyl monomers, enabling the synthesis of embolic microspheres for hepatocellular carcinoma interventions. PRMC involves allyl monomers to form allylic radicals and then radicals participating in a cycloaddition reaction with unsaturated olefins as radicalophiles to form cyclopentane-based radical products. While extensively studied in the theoretical and experimental homopolymerization, PRMC's application in copolymerization remains unexplored. To address this knowledge gap, we explored the elementary reaction, selecting allyl methyl ether radicals (AMER) and α,β-unsaturated ketones as radicalophiles for copolymerization investigations by density functional theory (DFT) analysis. We quantified energy differences between ground and excited states of reactants, elucidated frontier molecular orbitals, and assessed thermodynamic data for copolymerization feasibility. We also evaluated the electronic properties of reactants, predicting the reactivity of radicalophiles and the interactions of intermolecular reactions. Additionally, we applied transition state theory and interaction/deformation models and conducted a local orbital analysis to comprehensively study excess electron distribution and gyration radius of cyclic radical product. Our findings offer vital insights into PRMC's potential in copolymerization. This research provides a robust theoretical foundation for practical application, enhancing the polymerization field. METHODS Based on density functional theory (DFT), the calculations were performed at the M06-2X/6-311 + + G(d,p) level in/by Gaussian 16 package. Subsequently, our analytical results apply time-dependent density-functional theory (TD-DFT) and solvent modeling (SMD). Single-point energy calculations determine the driving force behind the radicals' reaction with radicalophiles. Furthermore, we assessed the electrostatic potential (ESP) of the reactants. The results of the calculations were visualized by the Multiwfn 3.6 and VMD 1.9 programs.
Collapse
Affiliation(s)
- Ou Liu
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Piaoyi Chen
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qinglin Xiao
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Chengfeng Yue
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yugang Huang
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Guodong Ye
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| |
Collapse
|
2
|
Chen P, Xiao Q, Guo Z, Liang W, Liu O, Lin L, Huang Y, Zhu K, Ye G. Synthesis and characterization of 3-in-1 multifunctional lipiodol-doped Fe 3O 4@Poly (diallyl isophthalate) microspheres for arterial embolization, chemotherapy, and imaging. Biomed Mater 2024; 19:035011. [PMID: 38387046 DOI: 10.1088/1748-605x/ad2c1a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Transcatheter arterial embolization plays a pivotal role in treating various diseases. However, the efficacy of embolization therapy in cancer treatment can be limited by several factors, such as inevitable incomplete or non-target embolization, and the tumor recurrence and metastasis caused by the hypoxic microenvironment. Moreover, it is essential to explore simpler, more economical, and efficient methods for microsphere synthesis. Herein, we achieved one-step photocatalytic synthesis of lipiodol-doped Fe3O4@Poly (diallyliso-phthalate) multifunctional microspheres (IFeD MS) for arterial embolization, chemotherapy, and imaging. The prepared microspheres are in the shape of dried plums, with a particle size of 100-300 μm. Lipiodol demonstrates a certain degree of chemotherapeutic activity, and the incorporation of Fe3O4enables the microspheres to exhibit magnetothermal response and magnetic resonance imaging capabilities. Furthermore, the radiopaque characteristics of both agents provide the microspheres with promising potential for computed tomography and digital radiography imaging. The renal embolization experiment in rabbits demonstrated that IFeD MS achieved significant embolization and chemotherapeutic effects. Biocompatibility experiments revealed that this embolic agent did not induce tissue damage or inflammation beyond the treatment area. Additionally, IFeD MS exhibited promising imaging potential. The results of this study imply that the developed multifunctional embolic agent IFeD MS may have significant potential in transforming tumors previously only suitable for palliative cares into resectable radical treatments.
Collapse
Affiliation(s)
- Piaoyi Chen
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Qinglin Xiao
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zhaoxiong Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, People's Republic of China
| | - Wei Liang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, People's Republic of China
| | - Ou Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, People's Republic of China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, People's Republic of China
| | - Yugang Huang
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, People's Republic of China
| | - Guodong Ye
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, People's Republic of China
| |
Collapse
|
3
|
Xiao Q, Chen P, Chen M, Zhou Y, Li J, Lun Y, Li Q, Ye G. Design of an imaging magnetic microsphere based on photopolymerization for magnetic hyperthermia in tumor therapy. Drug Deliv Transl Res 2023; 13:2664-2676. [PMID: 37130996 DOI: 10.1007/s13346-023-01347-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
Magnetic hyperthermia therapy has been widely used in the nonsurgical treatment of patients with advanced stage cancers that cannot be treated by surgery. It is minimally invasive, precise, and highly efficient and has a good curative effect. In this paper, a magnetic microsphere with Fe3O4 was prepared for thermal therapy and imaging based on a photoinitiated suspension polymerization method from biallelic monomers. The preparation method clearly minimized the degradative chain transfer of allyl polymerization reactions. The microspheres were characterized by microscope observation, spectral analysis, thermal analysis, and magnetic testing. The magnetothermal effect was detected by an infrared thermal imager in vitro and in vivo under a high-frequency alternating magnetic field (AMF). The antitumor effect was verified by testing the viability of H22 cells and observing a tumor-bearing mouse model under high-frequency AMF. Biocompatibility was evaluated by cell viability assay, tissue section observation, and blood biochemical analysis. The imaging capacity was tested by X-ray, MRI, and CT imaging experiments. The results show that the product has good dispersibility, thermal stability, superparamagnetism, and biocompatibility. Under the action of an AMF, the magnetic hyperthermia effect in tumor-bearing mice was better, and an antitumor effect could be achieved.
Collapse
Affiliation(s)
- Qinglin Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Piaoyi Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mianrong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yanfang Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiesong Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yingying Lun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiuxia Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Zhao X, Xu W, Chen X, Lin S, Li X, He L, Liao X, Ye G. A comparison of hydrogen abstraction reaction between allyl-type monomers with thioxanthone-based photoinitiators without amine synergists. Front Chem 2022; 10:967836. [PMID: 36118315 PMCID: PMC9478512 DOI: 10.3389/fchem.2022.967836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
The photodriven radical-mediated [3 + 2] cyclization reaction was found to yield polymers efficiently without being hindered by degradative chain transfer. The first reaction is a hydrogen abstraction process in which one hydrogen atom migrates from the α-methylene group of an allyl monomer to the triplet state (or fragments) of the photoinitiator, thus yielding primary allyl radicals as primary radicals and then begins chain propagation via a 3 + 2 cyclization reaction. Allyl ether monomers were found to be significantly higher than other allyl monomers even with the absence of amine-like synergists. In order to clarify the procedure of the hydrogen abstraction mechanism, we used four allyl-type monomers as hydrogen donors and three thioxanthone photoinitiators as hydrogen acceptors by the quantum chemistry method in terms of geometry and energy. The results were interpreted with transition-state theory and the interaction/deformation model. Then, the tunneling factors of hydrogen abstraction reactions were also investigated by Eckart’s correction. The results show allyl ether systems are more reactive than other allyl systems, and it would provide us with new insights into these hydrogen abstractions.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, China
| | - Wen Xu
- Department of Dermatology, Chengdu Second Peoples Hospital, Chengdu, China
| | - Xi Chen
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, China
| | - Shibo Lin
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, China
| | - Lihui He
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, China
| | - Xu Liao
- Department of Pharmacy, Chengdu Second Peoples Hospital, Chengdu, China
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guodong Ye,
| |
Collapse
|