1
|
Wei T, Zhu Y, Duan G, Han J, Han X, Zhang C, He S, Mao H, Ma C, Jiang S. Recent advances in nanocellulose-derived materials for dyes adsorption: A review. Int J Biol Macromol 2025; 306:141770. [PMID: 40057055 DOI: 10.1016/j.ijbiomac.2025.141770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Dye pollution has become one of the main pollution sources in the world, and the water pollution caused by it needs people's close attention. Nanocellulose is a sustainable biomaterial that is abundant in nature and has many advantages, such as high crystallinity, high hydrophilicity, high Young's modulus, high strength, and high surface activity. Its surface has abundant hydroxyl functional groups, making nanocellulose and its composites well used in adsorbing dyes from wastewater. In this paper, the adsorption mechanism and adsorption process of nanocellulose and its derived materials on cationic dyes and anionic dyes were discussed comprehensively. The specific adsorption mechanism was summarized, including adsorption isotherm model, adsorption kinetics process, adsorption thermodynamics process, etc. In addition, this article also looks forward to the future development of nanocellulose and related materials in the field of water treatment, and proposes new development directions.
Collapse
Affiliation(s)
- Tiantian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqin Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haimei Mao
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material, State Administration for Market Regulation, Hainan Academy of Inspection and Testing, Haikou, Hainan 570203, China.
| | - Chunxin Ma
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material, State Administration for Market Regulation, Hainan Academy of Inspection and Testing, Haikou, Hainan 570203, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Mathew A, Poulose A, Sasidharan SP, Pasquini D, Grohens Y, Gopakumar DA, George JJ. Bioinspired Hydrophobicity via Temperature-Induced Phase Separation of Beeswax: A Pathway for Developing Cellulose Nanofiber-Based Adsorbents for the Removal of Conventional Tetracycline Tablets. ACS APPLIED BIO MATERIALS 2024; 7:7009-7022. [PMID: 39378355 DOI: 10.1021/acsabm.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cellulose nanofiber-based aerogels (CNFAs) hold immense promise across diverse fields, but their innate hydrophilicity and structural fragility in water have constrained their utility in water purification. This study introduces a green approach to induce hydrophobicity into CNFAs via thermally induced phase separation (TIPS) of beeswax, which was adhered to the nanofiber by hydrogen bonding and hydrophobic-hydrophobic interactions. The fabricated aerogel was characterized by using FTIR, SEM, XRD, TGA, contact angle, BET, and compression test. The resulting beeswax cellulose nanofiber-based aerogels (BCNFAs) possess a highly porous structure and extremely low density, enabling the aerogels to self-float and facilitate practical applications and recycling. Due to these remarkable characteristics, BCNFAs had excellent adsorption capacity within 10 min to effectively remove tetracycline (TC) from water with an adsorption capacity of 31.6 mg/g. The demonstrated methodology to induce hydrophobicity in CNFAs via TIPS of beeswax on CNFAs could be an eco-friendly and scalable approach for the fabrication of robust BCNFAs without using any toxic chemicals. So far, this is the first report on to make robust hydrophobic CNFAs by employing TIPS of beeswax while maintaining the porosity of CNFAs, which is highly desirable for effective TC tablet adsorption from water in the present context. The demonstrated work has commercial potential as it focuses on the practical utility of the modified aerogel for adsorbing conventional tetracycline tablets, rather than exclusively targeting the pharmaceutical ingredient alone.
Collapse
Affiliation(s)
- Ajith Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Aiswarya Poulose
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Sari Panikkassery Sasidharan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Daniel Pasquini
- Laboratoire d'Íngenierie des Mate riaux de Bretagne, Centre de Recherche, Rue Saint Maude-BP 95116, Lorient, Cedex F-56321, France
| | - Yves Grohens
- Chemistry Institute, Federal University of Uberlandia-UFU, Campus Santa Monica-Bloco1D-CP593, Uberlandia 38400-902, Brazil
| | - Deepu A Gopakumar
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Jinu Jacob George
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| |
Collapse
|
3
|
Buema G, Segneanu AE, Herea DD, Grozescu I. Gels for Water Remediation: Current Research and Perspectives. Gels 2024; 10:585. [PMID: 39330187 PMCID: PMC11430982 DOI: 10.3390/gels10090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, particularly hydrogels and aerogels, have attracted significant research interest due to their unique properties. Hydrogels, for instance, are noted for their ability to be regenerated and reused, ease of separation and handling, and suitability for large-scale applications. Additionally, their low cost, high water absorption capacity, and contribution to environmental protection are important advantages. Aerogels, on the other hand, are distinguished by their low thermal conductivity, transparency, flexibility, high porosity, mechanical strength, light weight, large surface area, and ultralow dielectric constant. This review provides a comprehensive analysis of the current literature, highlighting gaps in knowledge regarding the classification, preparation, characterization, and key properties of these materials. The potential application of hydrogels and aerogels in water remediation, particularly in removing contaminants such as dyes, heavy metals, and various organic and inorganic pollutants, is also discussed.
Collapse
Affiliation(s)
- Gabriela Buema
- National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi, Romania;
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Romania;
| | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi, Romania;
| | - Ioan Grozescu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Romania;
| |
Collapse
|
4
|
Gorgolis G, Kotsidi M, Paterakis G, Koutroumanis N, Tsakonas C, Galiotis C. Graphene aerogels as efficient adsorbers of water pollutants and their effect of drying methods. Sci Rep 2024; 14:8029. [PMID: 38580774 PMCID: PMC10997784 DOI: 10.1038/s41598-024-58651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Environmental accidents highlight the need for the development of efficient materials that can be employed to eliminate pollutants including crude oil and its derivatives, as well as toxic organic solvents. In recent years, a wide variety of advanced materials has been investigated to assist in the purification process of environmentally compromised regions, with the principal contestants being graphene-based structures. This study describes the synthesis of graphene aerogels with two methods and determines their efficiency as adsorbents of several water pollutants. The main difference between the two synthesis routes is the use of freeze-drying in the first case, and ambient pressure drying in the latter. Raman spectroscopy, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and contact angle measurements are employed here for the characterisation of the samples. The as-prepared aerogels have been found to act as photocatalysts of aqueous dye solutions like methylene blue and Orange G, while they were also evaluated as adsorbents of organic solvents (acetone, ethanol and methanol), and, oils like pump oil, castor oil, silicone oil, as well. The results presented here show that the freeze-drying approach provides materials with better adsorption efficiency for the most of the examined pollutants, however, the energy and cost-saving advantages of ambient-pressure-drying could offset the adsorption advantages of the former case.
Collapse
Affiliation(s)
- G Gorgolis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece.
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece.
| | - M Kotsidi
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece
| | - G Paterakis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - N Koutroumanis
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - C Tsakonas
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - C Galiotis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece.
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece.
| |
Collapse
|
5
|
Cui C, Li D, Wang LJ, Wang Y. Curdlan/sodium carboxymethylcellulose composite adsorbents: A biodegradable solution for organic dye removal from water. Carbohydr Polym 2024; 328:121737. [PMID: 38220329 DOI: 10.1016/j.carbpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Composite adsorbent comprised of curdlan (CURD) and sodium carboxymethylcellulose (CMC) were fabricated through a single-step heating process, targeting the removal of methylene blue (MB) from wastewater. The CURD/CMC composite adsorbents had a honeycomb porous structure. The integration of CMC not only increased the storage modulus of the CURD/CMC composite hydrogels but also affected the thermal stability and swelling behavior of the composite adsorbents in different pH solutions. Specifically, the addition of 1.2 % CMC increased the peak temperature (184.73 °C) of CURD/CMC composite adsorbent melting by 5.99 °C compared to CURD adsorbent. The addition of CMC improved the swelling ratio of the composite adsorbent at pH 3,7, and 12 with swelling ratio up to 918.07 %. The synergistic interaction between CURD and CMC led to an enhanced adsorption capacity of the aerogel for MB, achieving a maximum adsorption capability of 385.85 mg/g. Adsorption isotherm assessments further demonstrated that the Langmuir isotherm model well fitted the adsorption data of the composite adsorbent on MB. Collectively, these findings underscore the potential of the developed biodegradable adsorbents as promising adsorbents for efficiently eliminating organic dyes from water.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Ahmad A, Omar KM, Alahmadi AA, Rizg WY, Bairwan RD, Abdul Khalil HPS. Bioadsorbent nanocellulose aerogel efficiency impregnated with spent coffee grounds. Int J Biol Macromol 2024; 258:128746. [PMID: 38104681 DOI: 10.1016/j.ijbiomac.2023.128746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Due to growing environmental concerns for better waste management, this study proposes developing a composite aerogel using cellulose nanofibers (CNF) and spent coffee grounds (SCG) through an eco-friendly method for efficient methylene blue (MB) adsorption. Adding SCG to the CNF aerogel altered the physical properties: it increases the volume (4.14 cm3 to 5.25 cm3) and density (0.018 to 0.022 g/cm3) but decrease the water adsorption capacity (2064 % to 1635 %). FTIR spectrum showed distinct functional groups in both all aerogels, showing hydroxyl, glyosidic bonds, and aromatic compounds. Additionally, SCG improved thermal stability of the aerogels. In term of adsorption efficacy, CNF-SCG40% aerogel as exceptionally well. According to Langmuir isotherm models, the adsorption of MB happened in a monolayer, with CNF-SCG40% showing a maximum adsorption capacity of 113.64 mg/g, surpassing CNF aerogel (58.82 mg/g). The study identified that the pseudo-second-order model effectively depicted the adsorption process, indicating a chemical-like interaction. This investigation successfully produced a single-use composite aerogel composed of CNF and SCG using an eco-friendly approach, efficiently adsorbing MB. By utilizing cost-effective materials and eco-friendly methods, this approach offers a sustainable solution for waste management, contributes to an eco-friendly industrial environment, and reduces production expenses and management costs.
Collapse
Affiliation(s)
- Azfaralariff Ahmad
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Khaled Mohamed Omar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rahul Dev Bairwan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - H P S Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
7
|
Zhang KY, Li D, Wang Y, Wang LJ. Carboxymethyl chitosan/polyvinyl alcohol double network hydrogels prepared by freeze-thawing and calcium chloride cross-linking for efficient dye adsorption. Int J Biol Macromol 2023; 253:126897. [PMID: 37709214 DOI: 10.1016/j.ijbiomac.2023.126897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The discharge of dye wastewater resulting from rapid industrial development has become a serious environmental concern. Therefore, there is a pressing need to develop efficient methods and technologies for the removal of dye pollutants. This study introduced a double network hydrogel, with varying carboxymethyl chitosan (CMCS) contents and polyvinyl alcohol (PVA), employing a combination of freeze- thawing and calcium chloride cross-linking. The investigation focused on the rheological properties of the hydrogels and their removal ability of acidic blue 93 (AB). The results showed that the strength and viscoelastic modulus of composite hydrogels were positively correlated with the CMCS content, and all composite hydrogels exhibited the typical weak strain overshoot behavior. The pore size of the gel initially decreased and then increased, with the densest pores observed at 4 wt% CMCS, showing the optimal removal ability for AB. The adsorption process followed pseudo second-order kinetic model, dominated by external diffusion, and exhibited inhomogeneous multilayer adsorption. This study unveils the potential of CMCS/PVA gels as adsorbents, offering inspirations for the design and development of polyvinyl alcohol-based gels for applications in the food industry.
Collapse
Affiliation(s)
- Kai-Yan Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
8
|
Younes K, Kharboutly Y, Antar M, Chaouk H, Obeid E, Mouhtady O, Abu-Samha M, Halwani J, Murshid N. Application of Unsupervised Learning for the Evaluation of Aerogels' Efficiency towards Dye Removal-A Principal Component Analysis (PCA) Approach. Gels 2023; 9:gels9040327. [PMID: 37102939 PMCID: PMC10137516 DOI: 10.3390/gels9040327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Water scarcity is a growing global issue, particularly in areas with limited freshwater sources, urging for sustainable water management practices to insure equitable access for all people. One way to address this problem is to implement advanced methods for treating existing contaminated water to offer more clean water. Adsorption through membranes technology is an important water treatment technique, and nanocellulose (NC)-, chitosan (CS)-, and graphene (G)- based aerogels are considered good adsorbents. To estimate the efficiency of dye removal for the mentioned aerogels, we intend to use an unsupervised machine learning approach known as "Principal Component Analysis". PCA showed that the chitosan-based ones have the lowest regeneration efficiencies, along with a moderate number of regenerations. NC2, NC9, and G5 are preferred where there is high adsorption energy to the membrane, and high porosities could be tolerated, but this allows lower removal efficiencies of dye contaminants. NC3, NC5, NC6, and NC11 have high removal efficiencies even with low porosities and surface area. In brief, PCA presents a powerful tool to unravel the efficiency of aerogels towards dye removal. Hence, several conditions need to be considered when employing or even manufacturing the investigated aerogels.
Collapse
Affiliation(s)
- Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Yahya Kharboutly
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Mayssara Antar
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Hamdi Chaouk
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Emil Obeid
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Omar Mouhtady
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Mahmoud Abu-Samha
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Jalal Halwani
- Water and Environment Sciences Lab, Lebanese University, Tripoli 22100, Lebanon
| | - Nimer Murshid
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| |
Collapse
|
9
|
Kasbaji M, Mennani M, Grimi N, Oubenali M, Mbarki M, Zakhem HEL, Moubarik A. Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int J Biol Macromol 2023; 239:124288. [PMID: 37023876 DOI: 10.1016/j.ijbiomac.2023.124288] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
This work describes the preparation of new eco-friendly adsorbents with a simple method. Gel beads of coffee grounds cellulose (CGC) and sodium alginate (SA) were prepared for wastewater treatment. Upon their synthesis, the physicochemical properties, performances and efficiency were analyzed by means of various structural and morphological characterizations. Kinetic and thermodynamic adsorption approaches evaluated the removal capacity of these beads which reached equilibrium in 20 min for Methylene Blue (MB) and Congo Red (CR). Also, the kinetics shows that the results can be explained by the pseudo-second-order model (PSO). Furthermore, the isotherm assessments showed that Langmuir-Freundlich can fit the adsorption data of both contaminants. Accordingly, the maximum adsorption capacities reached by the Langmuir-Freundlich model are 400.50 and 411.45 mg/g for MB and CR, respectively. It is interesting to note that the bio-adsorption capabilities of MB and CR on bead hydrogels decreased with temperature. Besides, the results of the thermodynamic study evidenced that the bio-adsorption processes are favorable, spontaneous and exothermic. The CGC/SA gel beads are therefore outstanding bio-adsorbents, offering a great adsorptive performance and regenerative abilities.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco; Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mehdi Mennani
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco
| | - Nabil Grimi
- Sorbonne University, University of Technology of Compiegne, Integrated Transformations of Renewable Matter Laboratory (UTC/ESCOM, EA 4297 TIMR), Royally Research Centre, CS 60 319, 60 203 Compiegne Cedex, France
| | - Mustapha Oubenali
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco
| | - Mohamed Mbarki
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco
| | - Henri E L Zakhem
- Chemical Engineering Department, University of Balamand, POBox 33, Amioun EL KOURA, Lebanon
| | - Amine Moubarik
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco.
| |
Collapse
|
10
|
Multifunctional nano-cellulose aerogel for efficient oil-water separation: Vital roles of magnetic exfoliated bentonite and polyethyleneimine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Biopolymeric Fibrous Aerogels: The Sustainable Alternative for Water Remediation. Polymers (Basel) 2023; 15:polym15020262. [PMID: 36679143 PMCID: PMC9867057 DOI: 10.3390/polym15020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023] Open
Abstract
The increment in water pollution due to the massive development in the industrial sector is a worldwide concern due to its impact on the environment and human health. Therefore, the development of new and sustainable alternatives for water remediation is needed. In this context, aerogels present high porosity, low density, and a remarkable adsorption capacity, making them candidates for remediation applications demonstrating high efficiency in removing pollutants from the air, soil, and water. Specifically, polymer-based aerogels could be modified in their high surface area to integrate functional groups, decrease their hydrophilicity, or increase their lipophilicity, among other variations, expanding and enhancing their efficiency as adsorbents for the removal of various pollutants in water. The aerogels based on natural polymers such as cellulose, chitosan, or alginate processed by different techniques presented high adsorption capacities, efficacy in oil/water separation and dye removal, and excellent recyclability after several cycles. Although there are different reviews based on aerogels, this work gives an overview of just the natural biopolymers employed to elaborate aerogels as an eco-friendly and renewable alternative. In addition, here we show the synthesis methods and applications in water cleaning from pollutants such as dyes, oil, and pharmaceuticals, providing novel information for the future development of biopolymeric-based aerogel.
Collapse
|
12
|
Li P, Yang C, Xu X, Miao C, He T, Jiang B, Wu W. Preparation of Bio-Based Aerogel and Its Adsorption Properties for Organic Dyes. Gels 2022; 8:755. [PMID: 36421576 PMCID: PMC9689576 DOI: 10.3390/gels8110755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2023] Open
Abstract
The effective utilization of biomass and the purification of dye wastewater are urgent problems. In this study, a biomass aerogel (CaCO3@starch/polyacrylamide/TEMPO-oxidized nanocellulose, CaCO3@STA/PAM/TOCN) was prepared by combining nanocellulose with starch and introducing calcium carbonate nanoparticles, which exhibited a rich three-dimensional layered porous structure with a very light mass. Starch and nanocellulose can be grafted onto the molecular chain of acrylamide, while calcium carbonate nanopores can make the gel pore size uniform and have excellent swelling properties. Here, various factors affecting the adsorption behavior of this aerogel, such as pH, contact time, ambient temperature, and initial concentration, are investigated. From the kinetic data, it can be obtained that the adsorption process fits well with the pseudo-second-order. The Langmuir isotherm model can fit the equilibrium data well. The thermodynamic data also demonstrated the spontaneous and heat-absorbing properties of anionic and cationic dyes on CaCO3@STA/PAM/TOCN aerogels. The adsorption capacity of Congo red (CR) and methylene blue (MB) by CaCO3@STA/PAM/TOCN was 277.76 mg/g and 101.01 mg/g, respectively. Therefore, cellulose and starch-based aerogels can be considered promising adsorbents for the treatment of dye wastewater.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuewen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianjiao He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|