1
|
Yang K, Zhang J, Zhang C, Guan J, Ling S, Shao Z. Hierarchical design of silkworm silk for functional composites. Chem Soc Rev 2025; 54:4973-5020. [PMID: 40237181 DOI: 10.1039/d4cs00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Silk-reinforced composites (SRCs) manifest the unique properties of silkworm silk fibers, offering enhanced mechanical strength, biocompatibility, and biodegradability. These composites present an eco-friendly alternative to conventional synthetic materials, with applications expanding beyond biomedical engineering, flexible electronics, and environmental filtration. This review explores the diverse forms of silkworm silk fibers including fabrics, long fibers, and nanofibrils, for functional composites. It highlights advancements in composite design and processing techniques that allow precise engineering of mechanical and functional performance. Despite substantial progress, challenges remain in making optimally functionalized SRCs with multi-faceted performance and understanding the mechanics for reverse-design of SRCs. Future research should focus on the unique sustainable, biodegradable and biocompatible advantages and embrace advanced processing technology, as well as artificial intelligence-assisted material design to exploit the full potential of SRCs. This review on SRCs will offer a foundation for future advancements in multifunctional and high-performance silk-based composites.
Collapse
Affiliation(s)
- Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| | - Jingwu Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Chen Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Juan Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
2
|
Jing ZY, Huo GL, Sun MF, Shen BB, Fang WJ. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation. Pharm Res 2022; 39:399-410. [PMID: 35083639 DOI: 10.1007/s11095-022-03170-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSES The primary objectives of this study were to investigate the degradation mechanisms of freeze-dried monoclonal antibody (mAb) formulations under mechanical grinding, assess the sensitivity and suitability of various particle analysis techniques, analyze the structure of the collected subvisible particles (SbVPs), and analyze the antioxidant mechanism of methionine (Met) under degradation process to gain a thorough understanding of the phenomenon. METHODS The freeze-dried mAb-X formulations underwent grinding, and the resultant SbVPs were characterized through visual inspection, flow imaging microscopy, dynamic light scattering, ultraviolet-visible spectroscopy, and size-exclusion high-performance liquid chromatography. We further evaluated the effect of different temperatures and the free radical scavenger Met on SbVP formation. The produced free radicals were detected using electron paramagnetic resonance, and Met S-oxide formation was detected using liquid chromatography-mass spectrometry. In addition, we analyzed the obtained SbVPs using capillary electrophoresis sodium dodecyl sulfate and Fourier transform infrared spectroscopy. RESULTS Grinding leads to SbVP formation under high temperature and free radical formation. Free radicals produced during grinding require the participation of a macromolecule. Met could then bind to the produced free radicals, thus partially protecting mAb-X from degradation while itself undergoing oxidation to form Met(O). Sensitivity differences between different particle analysis techniques were evaluated, and the obtained SbVPs showed significant changes in secondary structure and the formation of covalent aggregates and fragments. CONCLUSIONS Met plays the role of an antioxidant in protecting macromolecules by quenching the free radicals produced during grinding. To thoroughly characterize SbVPs, multiple and orthogonal particle analysis techniques should be used, and if necessary, SbVPs should be processed by enrichment to accurately analyze primary and high order structures.
Collapse
Affiliation(s)
- Zhen-Yi Jing
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Guo-Li Huo
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min-Fei Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Bin-Bin Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
3
|
3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111433. [PMID: 33255027 DOI: 10.1016/j.msec.2020.111433] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
Collapse
|
4
|
Anh Tuan H, Hirai S, Inoue S, A. H. Mohammed A, Akioka S, Ngo Trinh T. Fabrication of Silk Resin with High Bending Properties by Hot-Pressing and Subsequent Hot-Rolling. MATERIALS 2020; 13:ma13122716. [PMID: 32549228 PMCID: PMC7345461 DOI: 10.3390/ma13122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/01/2023]
Abstract
This research reports the processability and mechanical properties of silk resins prepared by hot-pressing followed by hot-rolling and then analyzes their thermal and structural properties. The results show that regenerated silk (RS) resins are better suited for hot-rolling than Eri and Bombyx mori silk resins (untreated silk). When hot-rolling at 160 °C with a 50% of reduction ratio, maximum bending strength and Young’s modulus of RS resin reaches 192 MPa and 10.2 GPa, respectively, after pretreatment by immersion in 40 vol% ethanol, and 229 MPa and 12.5 GPa, respectively, after pretreatment by immersion in boiling water. Increased strength of the material is attributed to the increased content of aggregated strands and intramolecular linking of β sheets (attenuated total reflectance Fourier-transform infrared spectroscopy) and higher crystallinity (X-ray diffraction analysis). After hot-pressing and hot-rolling, RS resins have a stable decomposition temperature (297 °C).
Collapse
Affiliation(s)
- Hoang Anh Tuan
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
- Technology and Alloys of casting Department, Research Institute of Technology for Machinery, Vietnam Engine and Agricultural Machinery Corporation-Joint Stock Company, No 25 Vu Ngoc Phan, Hanoi 100000, Vietnam
- Correspondence: (H.A.T.); (S.H.)
| | - Shinji Hirai
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
- Correspondence: (H.A.T.); (S.H.)
| | - Shota Inoue
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
| | - Alharbi A. H. Mohammed
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
| | - Shota Akioka
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
| | - Tung Ngo Trinh
- Function Polymers and Nano Materials Laboratory, Institute of Chemistry, Vietnam Academy of Science and Technology, No.08 Hoang Quoc Viet, Hanoi 100000, Vietnam;
| |
Collapse
|
5
|
Guo C, Li C, Mu X, Kaplan DL. Engineering Silk Materials: From Natural Spinning to Artificial Processing. APPLIED PHYSICS REVIEWS 2020; 7:011313. [PMID: 34367402 PMCID: PMC8340942 DOI: 10.1063/1.5091442] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/23/2020] [Indexed: 05/17/2023]
Abstract
Silks spun by the arthropods are "ancient' materials historically utilized for fabricating high-quality textiles. Silks are natural protein-based biomaterials with unique physical and biological properties, including particularly outstanding mechanical properties and biocompatibility. Current goals to produce artificially engineered silks to enable additional applications in biomedical engineering, consumer products, and device fields, have prompted considerable effort towards new silk processing methods using bio-inspired spinning and advanced biopolymer processing. These advances have redefined silk as a promising biomaterial past traditional textile applications and into tissue engineering, drug delivery, and biodegradable medical devices. In this review, we highlight recent progress in understanding natural silk spinning systems, as well as advanced technologies used for processing and engineering silk into a broad range of new functional materials.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
6
|
Tuan HA, Hirai S, Tamada Y, Akioka S. Preparation of silk resins by hot pressing Bombyx mori and Eri silk powders. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:431-437. [PMID: 30678929 DOI: 10.1016/j.msec.2018.12.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
We investigate the mechanical properties and structure of silk resins as potential alternatives to tortoiseshell for producing eyeglass frames and various ornaments. Silk powders are obtained from Bombyx mori and Eri silk waste fibers before the degumming process. The powders are fabricated into resins via simple hot pressing under a pressure of 31.2 MPa at temperatures in the range 150-180 °C. The results indicate that the B. mori resins have higher micro-Vickers hardness, three-point bending strength, and elastic modulus (66 Hv, 122 MPa, and 8.7 GPa, respectively) compared to the Eri silk resins (58 Hv, 95 MPa, and 8.2 GPa, respectively). The better mechanical properties of the fibroin resins are related directly to longer drying times. The optimum drying conditions are found to be at a temperature of 100 °C under a-vacuum of -0.1 MPa for a time of 7 d. ATR-FTIR and XRD results show how the fibroin structure changes after resinification and drying. The morphology and the distribution size of particle of the silk powders and the fractured surfaces of the resins are analyzed from SEM micrographs. The present findings demonstrate that silk resins are suitable materials for developing useful applications because of their favorable mechanical properties.
Collapse
Affiliation(s)
- H A Tuan
- Muroran Institute of Technology, Japan.
| | - S Hirai
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 050-8585, 27-1 Mizumoto-cho, Muroran-shi, Hokkaido, Japan.
| | - Y Tamada
- Faculty of Textile Science and Technology, Shinshu University, 386-8567, 3-15-1 Tokida, Ueda City, Nagano, Japan
| | - S Akioka
- Muroran Institute of Technology, Japan
| |
Collapse
|
7
|
Tang B, Zeng T, Liu J, Zhou J, Ye Y, Wang X. Waste Fiber Powder Functionalized with Silver Nanoprism for Enhanced Raman Scattering Analysis. NANOSCALE RESEARCH LETTERS 2017; 12:341. [PMID: 28486798 PMCID: PMC5422221 DOI: 10.1186/s11671-017-2118-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Biomass disks based on fine powder produced from disposed wool fibers were prepared for surface-enhanced Raman scattering (SERS). The wool powders (WPs) were modified by silver nanoprisms via an assembly method and then pressed into disks using a hydraulic laboratory pellet press. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the WPs and disks before and after treatment with silver nanoparticles (AgNPs). The WPs retained porous structures after treatment with AgNPs. The silver nanoprisms on WPs were observed clearly and the localized surface plasmon resonance (LSPR) properties of silver nanoprisms led to blue color of wool powder (WP). The obtained WP disks with AgNPs were confirmed to enhance greatly the Raman signal of thiram. The SERS disks are low-cost and convenient to use, with high sensitivity. The characteristic SERS bands of 10-8 M thiram can be identified from WP disks containing silver nanoparticles.
Collapse
Affiliation(s)
- Bin Tang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan, 430073, China
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | - Tian Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jun Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Yong Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Xungai Wang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan, 430073, China.
- Institute for Frontier Materials, Deakin University, Geelong, Australia.
| |
Collapse
|
8
|
Suktham K, Koobkokkruad T, Saesoo S, Saengkrit N, Surassmo S. Physical and biological characterization of sericin-loaded copolymer liposomes stabilized by polyvinyl alcohol. Colloids Surf B Biointerfaces 2016; 148:487-495. [PMID: 27673445 DOI: 10.1016/j.colsurfb.2016.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022]
Abstract
Sericin protein (SP) is widely used as a nutrient biomaterial for biomedical and cosmeceutical applications although it shows low stability to heat and light. To overcome these problems and add value to wastewater from the silk industry, sericin protein was recovered as sericin-loaded copolymer-liposomes (SP-PVA-LP), prepared through thin film hydration. The size and morphology of the liposomes were investigated using dynamic light scattering (DLS), and electron microscopy (SEM and TEM). The particle size, liposome surface morphology and encapsulation efficiency of SP were dependent on PVA concentration. The hydrodynamic size of the nanoparticles was between 200 and 400nm, with the degree of negative charge contingent on sericin loading. SEM and TEM images confirmed the mono-dispersity, and spherical nature of the particles, with FTIR measurements confirming the presence of surface bound PVA. Exposure of liposomes to 500ppm sericin highlighted a dependence of encapsulation efficiency on PVA content; 2% surface PVA proved the optimal level for sericin loading. Cytotoxicity and viability assays revealed that SP-loaded surface modified liposomes promote cellular attachment and proliferation of human skin fibroblasts without adverse toxic effects. Surface modified copolymer liposomes show high performance in maintaining structural stability, and promoting enhancements in the solubility and bio-viability of sericin. Taken together, these biocompatible constructs allow for effective controlled release, augmenting sericin activity and resulting in effective drug delivery systems.
Collapse
Affiliation(s)
- Kunat Suktham
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Thongchai Koobkokkruad
- Nano-Cosmeceutical Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Somsak Saesoo
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Nattika Saengkrit
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Suvimol Surassmo
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
9
|
Kazemimostaghim M, Rajkhowa R, Wang X. Drug loading and release studies for milled silk particles of different sizes. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zhao Z, Li Y, Zhang Y, Chen AZ, Li G, Zhang J, Xie MB. Development of silk fibroin modified poly(l-lactide)–poly(ethylene glycol)–poly(l-lactide) nanoparticles in supercritical CO2. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Kazemimostaghim M, Rajkhowa R, Wang X. Comparison of milling and solution approach for production of silk particles. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|