1
|
Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: A promising eco-friendly hybrid from green synthesis to dual application (Adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci 2024; 654:495-522. [PMID: 37862801 DOI: 10.1016/j.jcis.2023.10.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Herein, the green synthesis of heterogeneous dual functional MIL88A-on-MIL88B hybrids (MIL: Materials InstituteLavoisier) with different amounts of MIL88B compared to MIL88A, including 1:2, 1:1, and 2:1, has been carried out. The photocatalytic degradation of tetracycline and adsorption of tetracycline and dyes (Direct Red 80, Direct Red 23, Acid Blue 92, and Reactive Orange 14) were investigated. Although the ratio of MIL88A-on-MIL88B (1:1) hybrid displayed the best activity, there is a slight difference in the photocatalytic performance of the other mass ratios studied. The result revealed that after 70 min of forming MIL88A on MIL88B, the best pollutant removal performance is obtained. During the limited synthesis time, the lopsided growth of MIL88A on the MIL88B surface limits the formation of sufficient functional groups and new pores between MIL88B as the substrate and MIL88A, which are effective and decisive in the performance. In the photocatalytic studies, the synthesized composite had good compatibility with the zero-order kinetics, and hydroxyl radicals were recognized as the most active species in the photocatalytic reaction. In the adsorption process, the MIL88A-on-MIL88A composite followed pseudo-second-order kinetics and the Langmuir isotherm. Besides, mechanisms such as π-π interaction/stacking, hydrogen bonding, and π-metal interaction were proposed for the pollutant adsorption process.
Collapse
Affiliation(s)
- Bahareh Rabeie
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| |
Collapse
|
2
|
Alardhi SM, Salih HG, Ali NS, Khalbas AH, Salih IK, Saady NMC, Zendehboudi S, Albayati TM, Harharah HN. Olive stone as an eco-friendly bio-adsorbent for elimination of methylene blue dye from industrial wastewater. Sci Rep 2023; 13:21063. [PMID: 38030694 PMCID: PMC10687264 DOI: 10.1038/s41598-023-47319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Adsorbents synthesized by activation and nanoparticle surface modifications are expensive and might pose health and ecological risks. Therefore, the interest in raw waste biomass materials as adsorbents is growing. In batch studies, an inexpensive and effective adsorbent is developed from raw olive stone (OS) to remove methylene blue (MB) from an aqueous solution. The OS adsorbent is characterized using scanning electron microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Brunauer-Emmett-Teller (BET) surface area. Four isotherms are used to fit equilibrium adsorption data, and four kinetic models are used to simulate kinetic adsorption behavior. The obtained BET surface area is 0.9 m2 g-1, and the SEM analysis reveals significant pores in the OS sample that might facilitate the uptake of heavy compounds. The Langmuir and Temkin isotherm models best represent the adsorbtion of MB on the OS, with a maximum monolayer adsorption capacity of 44.5 mg g-1. The best dye color removal efficiency by the OS is 93.65% from an aqueous solution of 20 ppm at the OS doses of 0.2 g for 90 min contact time. The OS adsorbent serves in five successive adsorption cycles after a simple filtration-washing-drying process, maintaining MB removal efficiency of 91, 85, 80, and 78% in cycles 2, 3, 4, and 5, respectively. The pseudo second-order model is the best model to represent the adsorption process dynamics. Indeed, the pseudo second-order and the Elovich models are the most appropriate kinetic models, according to the correlation coefficient (R2) values (1.0 and 0.935, respectively) derived from the four kinetic models. The parameters of the surface adsorption are also predicted based on the mass transfer models of intra-particle diffusion and Bangham and Burt. According to the thermodynamic analysis, dye adsorption by the OS is endothermic and spontaneous. As a result, the OS material offers an efficient adsorbent for MB removal from wastewater that is less expensive, more ecologically friendly, and economically viable.
Collapse
Affiliation(s)
- Saja M Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
| | - Hussein G Salih
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Nisreen S Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Ali H Khalbas
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq.
| | - Hamed N Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Francis OA, Zaini MAA. Deep eutectic solvent-treated palm oil mill sludge adsorbents for methylene blue adsorption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1356. [PMID: 37870632 DOI: 10.1007/s10661-023-11925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
This study evaluated the adsorptive properties of deep eutectic solvent (DES)-treated palm oil mill sludge adsorbents for methylene blue removal. The adsorbents were prepared at a ratio of 1:2 at 80°C to form P1:D2@80°C, at 25°C to form P1:D2@25°C and without DES to form dry sludge (DS). The adsorbent samples were characterized for surface functional groups, textural properties and surface morphology. The values of specific area were 534, 236 and 184 m2/g, respectively. Batch adsorption of methylene blue at varying concentration, adsorbent dosage, pH, contact time and temperature was performed. The maximum adsorption capacities by Sips model were recorded as 72.07, 56.18 and 48.33 mg/g for P1:D2@80°C, P1:D2@25°C and DS, respectively. P1:D2@80°C displayed the highest rate constant (Ks = 0.0037 g/mg.min). The adsorption data were well fitted into Sips isotherm and pseudo-second-order kinetic models, suggesting that the adsorption is a physical process onto heterogeneous adsorbent surface via pore filling and electrostatic attraction. The adsorption was spontaneous, feasible and exothermic with decreased disorderliness in the solid-bulk solution interface. The DES-treated palm oil mill sludge adsorbent is a promising alternative adsorbent for dye removal from wastewater.
Collapse
Affiliation(s)
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
4
|
Francis AO, Kevin OS, Ahmad Zaini MA. Vitex doniana seed activated carbon for methylene blue adsorption: equilibrium and kinetics. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1625-1635. [PMID: 36823750 DOI: 10.1080/15226514.2023.2179013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study evaluated the characteristics of zinc chloride modified vitex doniana seed activated carbon (VDZnCl2) for the removal of methylene blue. VDZnCl2 was characterized for textural properties, surface morphology and surface chemistry. Batch adsorption of methylene blue by VDZnCl2 was evaluated for the effects of concentration, contact time, adsorbent dosage, and solution pH. The surface area increased from 14 to 933 m2/g with porous texture to facilitate adsorption. The SEM micrograph showed varieties of pores with widened cavities. The FTIR spectra showed the characteristics of O-H and C=C groups commonly found in carbonaceous materials. The maximum methylene blue adsorption was recorded as 238 mg/g at concentration range of 1-800 mg/L and VDZnCl2 dosage of 50 mg. Sips isotherm fitted well with the equilibrium data, suggesting that the adsorption by VDZnCl2 was a physical process onto its heterogeneous surface, while the applicability of pseudo-first-order kinetics implies that external diffusion was the rate controlling mechanism. The performance put up by VDZnCl2 suggested that it is a potential adsorbent substitute for dye wastewater treatment.
Collapse
Affiliation(s)
| | | | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
5
|
Moon S, Ryu J, Hwang J, Lee CG. Efficient removal of dyes from aqueous solutions using short-length bimodal mesoporous carbon adsorbents. CHEMOSPHERE 2023; 313:137448. [PMID: 36462564 DOI: 10.1016/j.chemosphere.2022.137448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Ordered mesoporous carbons (OMCs) with controlled mesopore lengths and volumes were synthesized and investigated to remove the model dye methylene blue (MB) from aqueous solutions. The pore size, specific surface area, pore volume, and pore length of OMCs (CMK-3, sCMK-3, and sCMK-5) were analyzed and benchmarked against commercial activated carbon (AC). CMK-3 and sCMK-3 had narrow pore size distributions (PSDs) centered at ∼4.4 nm, whereas the PSD of sCMK-5 was bimodal, derived from the same pores as CMK-3 (∼4.4 nm) and the inner diameter of the carbon nanotubes (∼5.8 nm). The pore length decreased from 743 nm for CMK-3 to 173 nm for sCMK-3 and 169 nm for sCMK-5, facilitating the MB accessibility and efficient utilization of internal mesopores. The MB adsorption on the prepared adsorbents was well described by a pseudo-second-order kinetic model (R2 > 0.999), and the initial adsorption rate (h) on sCMK-5 was 34.07-fold faster than that on commercial AC. The Langmuir model adequately explained the equilibrium adsorption data, and the increase in the Langmuir maximal adsorption capacity (qm) of the OMCs was proportional to the specific surface area. The MB adsorption on sCMK-5 was endothermic and spontaneous, and proceeded primarily through physical adsorption as well as chemisorption reacting with oxygen atoms in hydroxyl groups. The prepared adsorbents were also suitable for polishing textile wastewater containing color-causing substances along with the background organic matter. These OMCs are promising for treating wastewater as efficient adsorbents for large molecular pollutants such as dyes.
Collapse
Affiliation(s)
- Soeun Moon
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin Ryu
- Department of Chemical Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jongkook Hwang
- Department of Chemical Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea; Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Kar S, Santra B, Kumar S, Ghosh S, Majumdar S. Sustainable conversion of textile industry cotton waste into P-dopped biochar for removal of dyes from textile effluent and valorisation of spent biochar into soil conditioner towards circular economy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120056. [PMID: 36049578 DOI: 10.1016/j.envpol.2022.120056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Effective immobilization of industrial waste into biochar development could be one of the most promising technologies for solid waste management to achieve circular economy. In this study, post-industrial cotton textile waste (PICTW), a cellulose rich industrial waste, was subjected to slow pyrolysis to develop a surface engineered biochar through phosphoric acid impregnation. Biochar produced at 500 °C designated as PICTWB500 showed a maximum methylene blue number (240 mg g-1) with remarkable specific surface area of 1498 m2 g-1. FESEM, FTIR, XRD and Raman spectra analysis were performed to investigate the surface texture and functionalities developed in the biochar. Adsorption efficiency of the biochar was assessed using drimarene red, blue, violet, and black dyes as model dye pollutants in batch mode at different biochar dose, pH and contact time. The maximum monolayer adsorption capacity was obtained in the range 285-325 mg g-1 for different dyes, determined from Langmuir adsorption model. The kinetic behaviour was more favourable with the pseudo second-order model. The recycling ability of PICTWB500 was proven to be effective up to 6th cycle without compromising its adsorption efficiency significantly. This study demonstrated an excellent adsorption capability of the biochar in dye laden real textile effluent and recycling of spent biochar as a precursor of bio compost. Hence, this study established a dual win strategy for waste utilization in textile industry using a closed loop approach with substantial techno-economic feasibility that may have potential applications.
Collapse
Affiliation(s)
- Susmita Kar
- Membrane and Separation Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Bhaskar Santra
- Membrane and Separation Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Waste Re-processing Division, CSIR- National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440 020, India
| | - Sourja Ghosh
- Membrane and Separation Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Swachchha Majumdar
- Membrane and Separation Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India
| |
Collapse
|
7
|
Investigation of black liquor-derived carbon for removal of Cr(VI): Comparison with lignin-derived carbon. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Abdullah TA, Juzsakova T, Rasheed RT, Salman AD, Adelikhah M, Cuong LP, Cretescu I. V2O5 Nanoparticles for Dyes Removal from Water. CHEMISTRY JOURNAL OF MOLDOVA 2021. [DOI: 10.19261/cjm.2021.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This paper deals with V2O5 nanoparticles adsorbents which were obtained by thermal pretreatment carried out by increasing the temperature between 90 and 750°C. In order to obtain more detailed information on the surface chemistry of the newly prepared nanoparticles, the characterisation was done by X-ray diffraction and scanning electron microscopy, Fourier Transform infrared spectroscopy and thermogravimetric investigation technique. The prepared nanoparticles were tested for methylene blue (MB) removal from modelled water solutions. The obtained results indicated that increased MB removal efficiency (93%) and adsorption capacity (27 mg/g) after 40 minutes of adsorption were obtained for V2O5 annealed at 500°C. The applicability and suitability of the two kinetic models were tested and the removal mechanism was proposed.
Collapse
|
9
|
Ejaz U, Wasim AA, Khan MN, Alzahrani OM, Mahmoud SF, El-Bahy ZM, Sohail M. Use of Ionic Liquid Pretreated and Fermented Sugarcane Bagasse as an Adsorbent for Congo Red Removal. Polymers (Basel) 2021; 13:polym13223943. [PMID: 34833242 PMCID: PMC8622147 DOI: 10.3390/polym13223943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
A large amount of industrial wastewater containing pollutants including toxic dyes needs to be processed prior to its discharge into the environment. Biological materials such as sugarcane bagasse (SB) have been reported for their role as adsorbents to remove the dyes from water. In this study, the residue SB after fermentation was utilized for the dye removal. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to SB for lignin removal, and the pretreated SB was utilized for cellulase production from Bacillus aestuarii UE25. The strain produced 118 IU mL-1 of endoglucanse and 70 IU mL-1 of β-glucosidase. Scanning electron microscopy and FTIR spectra showed lignin and cellulose removal in fermented SB. This residue was utilized for the adsorption of an azo dye, congo red (CR). The thermodynamic, isotherm and kinetics studies for the adsorption of CR revealed distinct adsorption features of SB. Untreated SB followed Langmuir isotherm, whereas pretreated SB and fermented SB obeyed the Freundlich isotherm model. The pseudo-second-order model fitted well for the studied adsorbents. The results of thermodynamic studies revealed spontaneous adsorption with negative standard free energy values. Untreated SB showed a 90.36% removal tendency at 303.15 K temperature, whereas the adsorbents comprised of pretreated and fermented SB removed about 98.35% and 97.70%, respectively. The study provided a strategy to utilize SB for cellulase production and its use as an adsorbent for toxic dyes removal.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Agha Arslan Wasim
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan; (A.A.W.); (M.N.K.)
| | | | - Othman M. Alzahrani
- Department of Biology College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Correspondence:
| |
Collapse
|
10
|
Macchi S, Siraj N, Viswanathan T. Kinetic and mechanistic study of dye sorption onto renewable resource-based doped carbon prepared by a microwave-assisted method. ENVIRONMENTAL TECHNOLOGY 2021; 42:4115-4124. [PMID: 32194006 DOI: 10.1080/09593330.2020.1745293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Herein, a facile synthesis of heteroatom doped biochar is reported. The material is characterized and analyzed in detail for its application as a low-cost adsorbent for removal of a toxic dye pollutant, Methylene Blue (MB), from aqueous solution. Synthesized material showed enhanced surface area compared to parent biochar (458 to802 m2g-1) The adsorbent's performance is investigated using batch adsorption methods with experiments conducted at varying conditions of adsorbent dosage, initial dye concentration (50-500 mg/L), and pH (3-11). Adsorption of MB onto two different adsorbents such as biochar (BC) and doped BC, is fitted using Langmuir and Freundlich isotherms with the experimental data correlating most accurately with Langmuir modelling, indicating chemisorption mechanism of dye onto adsorbent. Maximum monolayer equilibrium adsorption from Langmuir equation is found to be 129.8 and 357.1 mg/g for pure BC and Phosphorus and Nitrogen co-doped BC (PNBC), respectively. Pseudo-first and -second order kinetic models are applied to investigate the adsorption mechanism of PNBC. Adsorption mechanism followed pseudo-second order model well, with correlation coefficients very close to 1. The results indicate that microwave-assisted heteroatom co-doped BC showed superior performance as adsorbent for the adsorption of MB dye from aqueous solution.
Collapse
Affiliation(s)
- Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Tito Viswanathan
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, USA
| |
Collapse
|
11
|
Yang J, Wang K, Lv Z, Li W, Luo K, Cao Z. Facile Preparation and Dye Adsorption Performance of Poly( N-isopropylacrylamide- co-acrylic acid)/Molybdenum Disulfide Composite Hydrogels. ACS OMEGA 2021; 6:28285-28296. [PMID: 34723025 PMCID: PMC8552478 DOI: 10.1021/acsomega.1c04433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 05/06/2023]
Abstract
Using N-isopropylacrylamide (NIPAM) and acrylic acid (AAc) as monomers, N,N'-methylenebisacrylamide (MBA) as a cross-linking agent, and molybdenum disulfide (MoS2) as functional particles, a P(NIPAM-co-AAc)/MoS2 composite hydrogel was prepared by free radical polymerization initiated by ultraviolet light. The results of Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy show that MoS2 has been successfully introduced into the P(NIPAM-co-AAc) system, and the obtained composite hydrogel has a porous network structure. Studies on the swelling property and dye adsorption performance show that the addition of MoS2 can increase the swelling ratio of P(NIPAM-co-AAc) hydrogels to a certain extent and can significantly improve the ability of the P(NIPAM-co-AAc) hydrogel to adsorb methylene blue (MB). The adsorption process of MB by the composite hydrogels conforms to the pseudo-second-order kinetics and the Langmuir isotherm adsorption models. The estimated equilibrium adsorption capacity (Q m) using the Langmuir isotherm model can reach 1258 mg/g, mainly due to the electrostatic interaction between the negatively charged groups -COO- and MoS2 particles on the network structure and the positively charged dye MB. The adsorption of MB by P(NIPAM-co-AAc)/MoS2 composite hydrogels depends on the temperature during adsorption. Compared with room temperature, a high temperature of 40 °C above the poly(N-isopropylacrylamide) (PNIPAM) phase transition temperature (∼32 °C) leads to a decreased adsorption capacity of the P(NIPAM-co-AAc)/MoS2 composite hydrogel for MB due to the enhanced hydrophobic properties of the network structure and the decrease of the swelling ratio. The prepared hydrogel material can be used as a good adsorbent for dyes, which is promising in wastewater treatment.
Collapse
Affiliation(s)
- Jianping Yang
- Department
of Orthopedics, Changzhou Hospital of Traditional
Chinese Medicine, 25 Heping North Road, Changzhou 213000, Jiangsu, P.
R. China
| | - Kailun Wang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zhengxiang Lv
- Department
of Orthopedics, Changzhou Hospital of Traditional
Chinese Medicine, 25 Heping North Road, Changzhou 213000, Jiangsu, P.
R. China
| | - Wenjun Li
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Keming Luo
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zheng Cao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Jingjiang 214500, P. R. China
- National
Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R.
China
| |
Collapse
|
12
|
Verification of pore size effect on aqueous-phase adsorption kinetics: A case study of methylene blue. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127119] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Udayakumar M, El Mrabate B, Koós T, Szemmelveisz K, Kristály F, Leskó M, Filep Á, Géber R, Schabikowski M, Baumli P, Lakatos J, Tóth P, Németh Z. Synthesis of activated carbon foams with high specific surface area using polyurethane elastomer templates for effective removal of methylene blue. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Ying Z, Huang L, Ji L, Li H, Liu X, Zhang C, Zhang J, Yi G. Efficient Removal of Methylene Blue from Aqueous Solutions Using a High Specific Surface Area Porous Carbon Derived from Soybean Dreg. MATERIALS 2021; 14:ma14071754. [PMID: 33918336 PMCID: PMC8038204 DOI: 10.3390/ma14071754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Porous carbon material with high specific surface area was prepared from soybean dreg by a simple and effective two-step method (high temperature pyrolysis and activation). The structural characteristics of the synthesized carbon were evaluated by Brunauer-Emmett-Teller (BET), N2 adsorption/desorption measurements/techniques, an elemental analyzer (EA), scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), an X-ray diffractometer (XRD), Raman spectroscopy (Raman), a Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The specific surface area of SDB-6-K was 2786 m2 g-1, the pore volume was 2.316 cm3 g-1, and the average pore size was 3.326 nm. The high specific surface area and effective functional groups of carbon material promoted the adsorption of methylene blue. The maximum adsorption capacity of SDB-6-K to methylene blue was 2636 mg g-1 at 318 K. The adsorption kinetic and isotherm data were most suitable for pseudo-second-order and Langmuir equations. The results showed that the adsorbent had excellent adsorptive ability and had good practical application potential in the field of dye wastewater treatment in the future.
Collapse
Affiliation(s)
- Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.Y.); (L.H.); (C.Z.); (J.Z.); (G.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lu Huang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.Y.); (L.H.); (C.Z.); (J.Z.); (G.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lili Ji
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China;
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.Y.); (L.H.); (C.Z.); (J.Z.); (G.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.)
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.Y.); (L.H.); (C.Z.); (J.Z.); (G.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.)
| | - Chi Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.Y.); (L.H.); (C.Z.); (J.Z.); (G.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.Y.); (L.H.); (C.Z.); (J.Z.); (G.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Guofu Yi
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.Y.); (L.H.); (C.Z.); (J.Z.); (G.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
15
|
Hassan MM, Carr CM. Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. CHEMOSPHERE 2021; 265:129087. [PMID: 33280840 DOI: 10.1016/j.chemosphere.2020.129087] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Currently used textile dyes are not highly toxic or carcinogenic, but the intense and persistent color of the effluent is problematic. Of the remediation processes investigated, the adsorption process is attractive, and carbonaceous adsorbents (CAs) are ideal for that purpose because of their very high dye-binding capacity (DBC). In this review, the potential of biomass-based feedstocks to produce CAs and the application of the produced adsorbents for the removal of various types of dyes from effluent have been compiled and critically reviewed. The effect of preparation conditions on the surface area, porosity, pore volume, and chemical characteristics of the produced CAs has been outlined and discussed. The DBC of various CAs at the optimum conditions has been compiled, and dye-binding mechanisms, dye sorption isotherm models, the stability of adsorbents, and regeneration methods of CAs are discussed. The analysis of the compiled dye-adsorption data shows that the dye-adsorption capacity of some CAs derived from biomasses and their composites is considerably higher than the commercially available activated carbon (AC) adsorbents. For example, a commercial AC (Filtrasorb-400) showed 400 mg/g DBC for the C.I. Reactive Red 120 dye. Conversely, the CS-DB adsorbent showed excellent anionic and cationic DBC for C.I. Direct Red 28 and C.I. Basic Green 4 dyes, 20317 and 12502 mg/g respectively. The porous carbon/polyvinyl alcohol hydrogel and GO/zeolitic imidazolate framework composite adsorbents exhibited dye-adsorption capacity as high as 13381.6 and 3300 mg/g respectively. The pore volume and functional groups of dyes are the deciding factors in achieving high dye adsorption.
Collapse
Affiliation(s)
- Mohammad M Hassan
- Bioproduct and Fiber Technology Team, AgResearch Limited, 1365 Springs Road, Lincoln, Christchurch, 7674, New Zealand.
| | - Christopher M Carr
- The Clothworkers' Center for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 5JQ, United Kingdom
| |
Collapse
|
16
|
Efimov MN, Vasilev AA, Muratov DG, Zhilyaeva NA, Dzidziguri EL, Karpacheva GP. Effect of the Temperature of Preliminary Treatment on the Structural Characteristics of Highly Porous Iron-Containing Metal–Carbon Nanocomposites during Their Production. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Shui Z, Yao L, Pu X, Yang L, Jiang W, Jiang X. Synthesis of a Novel Zeolite–Activated Carbon Composite Using Lithium–Silicon-Powder Waste for Ammonia-Nitrogen and Methylene Blue Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ziyi Shui
- College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - Lu Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
| | - Xiaoqin Pu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - Lin Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
| | - Wenju Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P. R. China
| |
Collapse
|
18
|
Bioadsorption of Basic Blue Dye from Aqueous Solution onto Raw and Modified Waste Ash as Economical Alternative Bioadsorbent. J CHEM-NY 2020. [DOI: 10.1155/2020/8746035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Dyes are one of the most hazardous materials in industrial effluents which can cause several health problems in living organisms. The removal of dye from colored effluents has attracted increasing attention in the last decade. In this study, raw, beneficiated, and activated waste ash were evaluated as adsorbents for removal of methylene blue (MB) from aqueous solution by the batch adsorption method. Comprehensive characterization studies were carried out on each bioadsorbent, such as proximate analyses, bulk density, specific surface area, point of zero charge, pH, and Fourier transform infrared (FTIR) spectroscopy (which shows functional groups on adsorbents surface). The effects of pH, adsorbent dosage, initial dye concentration, and contact time were determined in order to know the optimum condition and adsorption potential of the adsorbents. The methylene blue (MB) removal efficiency of raw, beneficiated, and activated bioadsorbents from aqueous solutions was found to be 95.212%, 89.172%, and 84.504%, respectively. It is reported that adsorption efficiency of MB on each adsorbent was quite different due to electrostatic and dispersion interaction between the dye molecules and the surface property of the adsorbents. The obtained results were well fitted with the Freundlich isotherm model, and the adsorption process follows the pseudo-second-order kinetics model for all adsorbents. In fact, the results showed that raw, beneficiated, and activated waste ash bioadsorbents could be employed as effective and economical alternative material in the near future.
Collapse
|
19
|
Ighalo JO, Eletta OAA. Recent advances in the biosorption of pollutants by fish scales: a mini-review. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1771322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Joshua O. Ighalo
- Chemical Engineering Department, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Omodele A. A. Eletta
- Chemical Engineering Department, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
20
|
Al-Ghouti MA, Dib SS. Utilization of nano-olive stones in environmental remediation of methylene blue from water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:63-77. [PMID: 32399221 PMCID: PMC7203364 DOI: 10.1007/s40201-019-00438-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/30/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND The use of agricultural waste as a low-cost adsorbent for the removal of hazardous methylene blue (MB) from aqueous solution was investigated. In this research, the potentiality of using black nano olive stones (black NOS) and green nano olive stones (green NOS) for MB adsorption was conducted. METHODS Various remediation parameters such as initial MB concentration, pH, and temperature were investigated. Thermodynamic study was carried out to determine the homogeneity of the adsorbent and spontaneity of the adsorption process. Different physical and chemical characterizations were studied using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Brunauer-Emmett-Teller (BET) surface area, pore radius and pore volume. RESULTS It was found that NOS exhibits an acidic nature, however the highest MB removal efficiency was recorded at pH 10; reaching up to 71%. The negative value of the heat of the adsorption process (∆H ° ) indicated the reaction followed an exothermic pathway while the negative value of Gibbs adsorption (∆G ° ) further suggested its spontaneous nature. The results indicated that the Freundlich model described well the adsorption process with 99.5% correlation coefficient for green NOS. FTIR was used to analyze functional groups on the adsorbents' surfaces that could play vital roles in the remediation process. SEM analysis revealed that the adsorbents comprised of abundant spherical deep cavities and porous nature. CONCLUSION The result obtained successfully demonstrated the potential of using black and green NOS as suitable adsorbents for the removal of MB from water.
Collapse
Affiliation(s)
- Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Samah S. Dib
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
21
|
Hou Y, Yan S, Huang G, Yang Q, Huang S, Cai J. Fabrication of N-doped carbons from waste bamboo shoot shell with high removal efficiency of organic dyes from water. BIORESOURCE TECHNOLOGY 2020; 303:122939. [PMID: 32045864 DOI: 10.1016/j.biortech.2020.122939] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
N-doped carbons were obtained from bamboo shoot shell via hydrothermal pretreatment under salt assistance followed by carbonization, using melamine as nitrogen source. The carbons with tubular morphology and surface areas in 406-489 m2/g range were used as adsorbents for the removal of methyl orange (MO) and rhodamine B (RhB). Adsorption isotherms and kinetic fitting showed much better accordance with Freundlich model and pseudo-second-order, showing balanced capacity (qe) of 50 mg/g for MO and 42 mg/g for RhB on the pristine carbons (BHC-800) at 25 °C. After N-doping treatment, carbons (BSC-M20) had qe of MO and RhB up to 140 and 100 mg/g, respectively, confirming a positive effect of N-doping on the enhancement of dyes removal. The findings indicated that hydrothermal treatment followed by carbonization was efficient to obtain N-doped carbons from biomass materials, and the present BSS-derived carbons were promising adsorbents for organic dyes removal from water.
Collapse
Affiliation(s)
- Yanrui Hou
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Sinian Yan
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Gege Huang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Qipeng Yang
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shirong Huang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jinjun Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
22
|
Zhang C, Dai Y, Wu Y, Lu G, Cao Z, Cheng J, Wang K, Yang H, Xia Y, Wen X, Ma W, Liu C, Wang Z. Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr Polym 2020; 234:115882. [DOI: 10.1016/j.carbpol.2020.115882] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
|
23
|
Wang Y, Peng Q, Akhtar N, Chen X, Huang Y. Microporous carbon material from fish waste for removal of methylene blue from wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1180-1190. [PMID: 32597405 DOI: 10.2166/wst.2020.211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microporous fish waste-based activated carbon material (MFC) was prepared, with a large surface area of 2,193.52 m²/g, a pore size of 2.67 nm and micropore and total pore volumes of 0.9168 cm³/g and 0.9975 cm³/g, respectively. Adsorption efficiency of MFC was investigated by removal of methylene blue dye from wastewater. The Langmuir model and pseudo-second-order kinetics adequately described the adsorption process. MFC exhibited a high adsorption capacity of 476.19 mg/g at 30 °C, and reached equilibrium within 1 h. MFC could be an efficient and low-cost adsorbent for cationic dye removal during wastewater treatment.
Collapse
Affiliation(s)
- You Wang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China E-mail:
| | - Qifan Peng
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China E-mail:
| | - Naseem Akhtar
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China E-mail:
| | - Xiaonong Chen
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China E-mail:
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China E-mail:
| |
Collapse
|
24
|
Chang J, Shen Z, Hu X, Schulman E, Cui C, Guo Q, Tian H. Adsorption of Tetracycline by Shrimp Shell Waste from Aqueous Solutions: Adsorption Isotherm, Kinetics Modeling, and Mechanism. ACS OMEGA 2020; 5:3467-3477. [PMID: 32118161 PMCID: PMC7045497 DOI: 10.1021/acsomega.9b03781] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/31/2020] [Indexed: 05/12/2023]
Abstract
The highly efficient removal of tetracycline (TC) from an aqueous solution was accomplished by using the raw shrimp shell waste (SSW) as an environmentally friendly adsorbent. The SSW without any treatment removed TC more efficiently than the SSW after being treated with HCl and NaOH solutions. The SSW was characterized using nitrogen adsorption-desorption isotherms, scanning electron microscopy alongside energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, a thermogravimetric-derivative thermogravimetry analyzer, and a ζ-potential analyzer. The maximum adsorption capacity of 400 mg/L SSW was 229.98 mg/g for 36 h at 55 °C. Both the Langmuir isotherm model and the pseudo-second-order kinetic model well described the experimental data. According to the values of the Gibbs free energy and enthalpy changes, the TC adsorption by SSW proved to be spontaneous and endothermic. The TC adsorption process was controlled by intraparticle diffusion and liquid film diffusion.
Collapse
Affiliation(s)
- Jing Chang
- College
of Resources and Environment, Qingdao Agricultural
University, Qingdao 266109, China
- State
Key Laboratory Base for Eco-Chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
& Technology, Qingdao 266042, China
| | - Zhen Shen
- College
of Resources and Environment, Qingdao Agricultural
University, Qingdao 266109, China
| | - Xiude Hu
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, Ningxia University, Yinchuan 750021, China
| | - Emily Schulman
- Department
of Chemical & Biomolecular Engineering, University of Maryland at College Park, College Park, Maryland 20740, United States
| | - Chunyue Cui
- College
of Resources and Environment, Qingdao Agricultural
University, Qingdao 266109, China
| | - Qingjie Guo
- Department
of Chemical & Biomolecular Engineering, University of Maryland at College Park, College Park, Maryland 20740, United States
| | - Hongjing Tian
- State
Key Laboratory Base for Eco-Chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
& Technology, Qingdao 266042, China
- E-mail:
| |
Collapse
|
25
|
Guediri A, Bouguettoucha A, Chebli D, Chafai N, Amrane A. Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127290] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Removal of Acid Dyes from Textile Wastewaters Using Fish Scales by Absorption Process. CLEAN TECHNOLOGIES 2019. [DOI: 10.3390/cleantechnol1010021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fish scales (FS), a byproduct of the fish processing industry, are often discarded carelessly. In this present study, FS were used as a promising bio-sorbent for the removal of anionic acid dyes (acid red 1 (AR1), acid blue 45 (AB45) and acid yellow 127 (AY127)) from the wastewaters of textile coloration. Here, physiochemical characterizations of the FS were investigated by SEM-EDS, TGA and FI-IR analyses, and dye absorption and removal efficiency were evaluated and optimized considering different process parameters such as concentration of initial dye solution, amount of FS used, contact time, FS size, process temperature, additives, stirring and vacuum. SEM images and EDS elemental analyses showed architectural variation and heterogeneous composition of FS at different places. TGA identified the 50% minerals, 33% organic matters and 17% moisture and volatile components. FI-IR evidenced considerable absorption of acid dyes. Process optimization revealed that additives and fine pulverized FS had significant positive and negative impact on the dye removal efficacy, respectively. Temperature and stirring improved dye removal efficiency, and dye absorption by FS was very fast at the beginning and became almost constant after an hour indicating saturation of absorption. The maximum dye absorptions in scales for AR1, AB45, and AY127 were noted as 1.8, 2.7 and 3.4 mg/g, respectively, and removal percentages were 63.5%, 89.3% and 93%. The effects of the process parameters were consistent across all three acid dyes used in this study. Two-way ANOVA model showed that dye type, process parameters and ‘dye type X process parameters’ interactions had significant effect on the dye removal efficiency.
Collapse
|
27
|
Synthesis of carbon molecular sieve for carbon dioxide adsorption: Chemical vapor deposition combined with Taguchi design of experiment method. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Gelation of Textile Dye Solution Treated with Fish Scales. Gels 2019; 5:gels5030037. [PMID: 31323748 PMCID: PMC6787734 DOI: 10.3390/gels5030037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
In the present article, the commercial value of fish scales (FS), one of the most discarded fish wastes, has been identified by discovering their gelation capability. Fish scales of different physical forms were applied for the removal of dyes (acid red 1 (AR1), acid blue 45 (AB45), and acid yellow 127 (AY127)) from textile dye solution by absorption process. An astounding phenomenon, gelation of the treated solution, was noticed when it was aged for a certain period. The absorption of dye by FS was confirmed and quantified by FT-IR and UV-visible spectroscopy analyses, respectively. Process optimization revealed that pristine FS showed better gelation efficacy compared to pulverized FS. The gelation process was successful only when the dye solution contained acid and salt. As most of the textile effluents contain acids and salts in the discarded dye solution, this gelation process implies an obvious indication of the saving process and chemical cost in textile waste treatment. The jellified wastewater was characterized by exploring the rheological properties. Based on these analyses, potential application areas have been discussed.
Collapse
|
29
|
Zhou J, Zhang C, Niu T, Huang R, Li S, Sun J, Wang Y. Facile synthesis of reusable magnetic Fe/Fe3C/C composites from renewable resources for super-fast removal of organic dyes: Characterization, mechanism and kinetics. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Patil PP, Bohara RA, Meshram JV, Nanaware SG, Pawar SH. Hybrid chitosan-ZnO nanoparticles coated with a sonochemical technique on silk fibroin-PVA composite film: A synergistic antibacterial activity. Int J Biol Macromol 2019; 122:1305-1312. [DOI: 10.1016/j.ijbiomac.2018.09.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
|
31
|
Xiong W, Hu D. Fabrication of phosphonium bamboo cellulose by triphenylphosphine: preparation, characterization, and adsorption of Acid Black 24. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1880-1891. [PMID: 30460647 DOI: 10.1007/s11356-018-3711-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Cellulose from bamboo shavings (BC) separated and modified by grafting triphenylphosphine, which was used as an adsorbent for the removal of Acid Black 24 from aqueous solution. The quaternary phosphonium-based bamboo cellulose (PBC) was characterized by FTIR and SEM measurements. The FTIR studies showed that the quaternary phosphonium group was successfully grafted onto the BC molecular structure. The effects of PBC dosage, contact time, initial dye concentration, temperature, and pH on the adsorption performance were studied. The nonlinear fitting kinetics and isotherms models were also conducted. The pseudo-second-order, intra-particle diffusion and Langmuir models were more suitable for analyzing the adsorption behavior of PBC for Acid Black 24 dye. The adsorption activation energy was lower than 40 kJ mol-1, and the ΔH0 value was in the range of 20~80 kJ mol-1, indicating that PBC played a dominant role in the physical purification of dye. The results of thermodynamic analysis indicated that the adsorption was a spontaneous endothermic purification process. Adsorbents had a good reusability and high adsorption performance for dye removal. The adsorbents PBC had a good reusability and could effectively remove residual Acid Black 24 dye with good development prospects in the field of biomass adsorbent materials.
Collapse
Affiliation(s)
- Wei Xiong
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue East Road, Nanning, 530004, China
| | - Dongying Hu
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue East Road, Nanning, 530004, China.
| |
Collapse
|
32
|
Activated carbons by zinc chloride activation for dye removal – a commentary. ACTA CHIMICA SLOVACA 2018. [DOI: 10.2478/acs-2018-0015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Zinc chloride is a commonly used activator in chemical activation of activated carbon. Various carbonaceous materials have been studied as potential source of activated carbon. The operating conditions are manipulated with attention to improve the properties and performance of activated carbon in the adsorption of water pollutants. However, the generalized attributes of zinc chloride activation in relation to the adsorptive performance of activated carbon are not well documented in much of published literature. Therefore, the present work is aimed to highlight the activation strategies and mechanisms of zinc chloride activation of activated carbon. The roles of impregnation ratio, period of activation and temperature are discussed to offer some insight into textural characteristics of activated carbon. The case studies on methylene blue adsorption are integrated to shed light on the external factors affecting the adsorption.
Collapse
|
33
|
Wang M, Xie R, Chen Y, Pu X, Jiang W, Yao L. A novel mesoporous zeolite-activated carbon composite as an effective adsorbent for removal of ammonia-nitrogen and methylene blue from aqueous solution. BIORESOURCE TECHNOLOGY 2018; 268:726-732. [PMID: 30149316 DOI: 10.1016/j.biortech.2018.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
A mesoporous zeolite-activated carbon composite (Z-AC) was prepared by hydrothermal synthesis method for both ammonia-nitrogen (NH3-N) and methylene blue (MB) removal from aqueous solution. For Z-AC with the reparation temperature of 90 °C and kaolin/AC = 4, the adsorption capacity of MB (754.75 mg/g, 298 K) was 83% of that for pure AC, and the adsorption capacity of NH3-N were 9.00 mg/g, which was higher than that for AC and Z (the kaolin after hydrothermal treatment). The Z-AC exhibited obvious mesoporous structure, the SBET of the Z-AC (378 cm2/g) was 31% of that for AC (1215 cm2/g). The introduction of a small amount of AC into Z increased the SBET of Z, thus, the adsorption capacity of MB was improved dramatically. On the other hand, the dispersion of Z was enhanced by adding AC, which promoted the contact between Z and NH3-N, and then led to improvement of the NH3-N adsorption.
Collapse
Affiliation(s)
- Min Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Yao Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Xiaoqin Pu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Wenju Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, PR China
| | - Lu Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, PR China.
| |
Collapse
|
34
|
Bedin KC, Souza IP, Cazetta AL, Spessato L, Ronix A, Almeida VC. CO2-spherical activated carbon as a new adsorbent for Methylene Blue removal: Kinetic, equilibrium and thermodynamic studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Chen LF, Wang HH, Lin KY, Kuo JY, Wang MK, Liu CC. Removal of methylene blue from aqueous solution using sediment obtained from a canal in an industrial park. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:556-570. [PMID: 30207997 DOI: 10.2166/wst.2018.326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drainage canal sediments in an industrial park are generally dredged to landfill in Taiwan. The objective of this study was to evaluate feasibility employing the sediment as an adsorbent for removal of dye. The sediment contained approximately 10% of organic matter and little heavy metals. Infrared (IR) analysis revealed that carboxyl was the most important functional group for methylene blue (MB) sorption. Canal sediment could remove the most MB from water at pH 8.0 and this removal increased with increasing temperature. The MB sorption was well described by the Langmuir, Dubinin-Radushkevich, and Temkin sorption isotherms at 10°C, but it showed good compliance with Freundlich isotherm at 25°C and 40°C. The MB adsorption was a spontaneous and endothermic reaction; its maximum calculated adsorption capacity (Qm) was 56.0 mg g-1 at 10°C by the Langmuir isotherm. The calculated values of enthalpy (ΔH°) and entropy (ΔS°) are 14.6 kJ mol-1 and 149.2 kJ mol-1, respectively. Only pseudo-second-order adsorption kinetic model successfully described the kinetics of MB onto the sediment at different operation parameters. Activation energy of MB adsorption calculated from Arrhenius equation was 16.434 kJ mol-1, indicating the binding between canal sediment and MB was a physical adsorption.
Collapse
Affiliation(s)
- Lih-Fu Chen
- College of Liberal Education, Shu-Te University, Kaohsiung 82445, Taiwan
| | - Hsiou-Hsuan Wang
- Department of Materials Engineering, National Ilan University, Ilan 260, Taiwan
| | - Kao-Yung Lin
- Department of Living Sciences, Nation Open University, Taipei 24701, Taiwan
| | - Jui-Yen Kuo
- Department of Environmental Engineering, National Ilan University, Ilan 260, Taiwan E-mail:
| | - Ming-Kuang Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Cheng-Chung Liu
- Department of Environmental Engineering, National Ilan University, Ilan 260, Taiwan E-mail:
| |
Collapse
|
36
|
Kosswattaarachchi AM, Cook TR. Repurposing the Industrial Dye Methylene Blue as an Active Component for Redox Flow Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201801097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Timothy R. Cook
- Department of Chemistry; University at Buffalo, The State University of New York; Buffalo, New York USA
| |
Collapse
|
37
|
Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration. Catalysts 2018. [DOI: 10.3390/catal8070267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Kinetic Study of the Bioadsorption of Methylene Blue on the Surface of the Biomass Obtained from the Algae D. antarctica. J CHEM-NY 2018. [DOI: 10.1155/2018/2124845] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, there is a great pollution of water by the dyes; due to this, several studies have been carried out to remove these compounds. However, the total elimination of these pollutants from the aquatic effluents has represented a great challenge for the scientific community, for which it is necessary to carry out investigations that allow the purification of water. In this work, we studied the bioadsorption of methylene blue on the surface of the biomass obtained from the algae D. antarctica. This material was characterized by SEM and FTIR. To the data obtained in the biosorption experiments, different models of biosorption and kinetics were applied, finding that the best fit to the obtained data is given by applying the pseudo-second-order models and the Toth model, respectively. It was also determined that the maximum adsorption capacity of MB on the surface of the biomass is 702.9 mg/g, which shows that this material has great properties as a bioadsorbent.
Collapse
|
39
|
Green synthesis and influence of calcined temperature on the formation of novel porous diatomite microspheres for efficient adsorption of dyes. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.01.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Niu T, Zhou J, Zhang C, Li S. Fast removal of methylene blue from aqueous solution using coal-based activated carbon. RSC Adv 2018; 8:26978-26986. [PMID: 35541059 PMCID: PMC9083273 DOI: 10.1039/c8ra04396e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
Coal-based activated carbons (CACs) were prepared from three long flame coals with different ash and volatile matter content. CACs prepared by coal with high ash (6.74%) and volatile matter content (34.31%) showed better adsorption efficiency towards MB (547.35 mg g−1) due to higher surface area and pore volume. The effect of coal to activating agent ratio (CAR) was also investigated in a batch reactor. The porosity development is closely related to the CAR. The calculated monolayer adsorption amount (714.29 mg g−1) was found on YLC-AC-3 with a surface area of 1212.50 m2 g−1. The equilibrium data were favorably described by the Langmuir and Freundlich isotherm models, and adsorption kinetics fitted well to the pseudo-second order model. The removal efficiency remains at 98.21% after five runs. The results of the present study suggest that CACs are potential and effective adsorbents in fast removal of dyes from aqueous solution. A monolayer adsorption amount of MB (714.29 mg g−1) was found on a coal-based activated carbon prepared by a simple method.![]()
Collapse
Affiliation(s)
- Taoxia Niu
- School of Chemical Engineering
- Northwest University
- Xi'an
- People's Republic of China
| | - Jiawei Zhou
- School of Chemical Engineering
- Northwest University
- Xi'an
- People's Republic of China
| | - Chao Zhang
- School of Chemical Engineering
- Northwest University
- Xi'an
- People's Republic of China
| | - Shuang Li
- School of Chemical Engineering
- Northwest University
- Xi'an
- People's Republic of China
| |
Collapse
|
41
|
Singh S, Sidhu GK, Singh H. Removal of methylene blue dye using activated carbon prepared from biowaste precursor. Chem Ind 2017. [DOI: 10.1080/00194506.2017.1408431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sonika Singh
- Department of Chemistry, Lovely Professional University, Punjab, India
| | | | - Harminder Singh
- Department of Chemistry, Lovely Professional University, Punjab, India
| |
Collapse
|