1
|
Wang Z, Wang C, Sun CC. Elucidating critical factors driving the tabletability flip phenomenon. Int J Pharm 2025; 672:125337. [PMID: 39938726 DOI: 10.1016/j.ijpharm.2025.125337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Tabletability is a key property that determines a powder's ability to form tablets under applied stresses, typically represented by a plot of tablet tensile strength versus pressure. Tablet tensile strength reflects the contributions of interparticulate bonding area (BA) and bonding strength (BS) between adjacent particles in a tablet. BA is influenced by mechanical properties, particle characteristics, and tableting conditions, while BS is governed by molecular packing and intermolecular interactions. The "tabletability flip" phenomenon (TFP) occurs when, for a pair of solid forms of an active pharmaceutical ingredient (API), the form with a higher tabletability as a pure powder exhibits a lower tabletability when formulated with an excipient. Factors affecting either BA or BS can also impact the occurrence and extent of TFP, but their impact has not been systematically evaluated. In this work, we evaluated the impact of API loading, excipient type, particle size, and tableting speed on TFP. Our results indicate that TFP is likely to occur when the plasticity of an excipient is comparable to the softer API, particularly at intermediate drug loadings and under high compaction pressures. Additionally, the particle size of the excipient significantly influences both the occurrence and extent of TFP, while API particle size and tableting speed have only a marginal impact.
Collapse
Affiliation(s)
- Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA.
| |
Collapse
|
2
|
Tait T, Salehian M, Aroniada M, Shier AP, Elkes R, Robertson J, Markl D. Empirical Model Variability: Developing a new global optimisation approach to populate compression and compaction mixture rules. Int J Pharm 2024; 662:124475. [PMID: 39019299 DOI: 10.1016/j.ijpharm.2024.124475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
This study systematically evaluated the predictive accuracy of common empirical models for pharmaceutical powder compaction. A dataset of nine placebo and twelve active pharmaceutical ingredient (API) loaded blend formulations (four APIs at three drug loadings) was fitted to the widely used empirical tablet compression (Gurnham, Heckel, and Kawakita) and compaction (Ryshkewitch-Duckworth and Leuenberger) models. At low API loadings (<20w/w%), all models achieved R2 above 90 % and RRMSE (relative root mean squared error) below 0.1. However, as API loads increased, overall model performance decreased, notably in the Heckel model. A parameter variability analysis identified multiple parameter pairs achieving acceptable fits. Consequently, a novel global optimization approach was developed populating arithmetic, geometric, and harmonic mixture rules for empirical tuning parameters. This method outperformed the traditional line of best fit approach. A cross validation study revealed that this method is capable of predicting tuning parameters which achieve an acceptable Goodness of Fit for new blends. Finally, with the restriction of maintaining consistent parameters for the placebo blend, the proposed method could substantially reduce the experimental requirements and API consumption for the exploration of new blends.
Collapse
Affiliation(s)
- Theo Tait
- Centre for Continuous Manufacturing and Advanced Crystallization (CMAC), University of Strathclyde, Glasgow G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Mohammad Salehian
- Centre for Continuous Manufacturing and Advanced Crystallization (CMAC), University of Strathclyde, Glasgow G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | | | | | | - John Robertson
- Centre for Continuous Manufacturing and Advanced Crystallization (CMAC), University of Strathclyde, Glasgow G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Daniel Markl
- Centre for Continuous Manufacturing and Advanced Crystallization (CMAC), University of Strathclyde, Glasgow G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
3
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|
4
|
Clarke J, Gamble JF, Jones JW, Tobyn M, Ingram A, Greenwood R. Determining the Impact of Roller Compaction Processing Conditions on Granulate and API Properties: Impact of Formulation API Load. AAPS PharmSciTech 2024; 25:24. [PMID: 38267745 DOI: 10.1208/s12249-024-02744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Previous work demonstrated that roller compaction of a 40%w/w theophylline-loaded formulation resulted in granulate consisting of un-compacted fractions which were shown to constitute between 34 and 48%v/v of the granulate dependent on processing conditions. The active pharmaceutical ingredient (API) primary particle size within the un-compacted fraction was also shown to have undergone notable size reduction. The aim of the current work was to test the hypothesis that the observations may be more indicative of the relative compactability of the API due to the formulation being above the percolation threshold. This was done by assessing the impact of varied API loads in the formulation on the non-granulated fraction of the final granulate and the extent of attrition of API particles within the non-granulated fraction. The influence of processing conditions for all formulations was also investigated. The results verify that the observations, both of this study and the previous work, are not a consequence of exceeding the percolation threshold. The volume of un-compacted material within the granulate samples was observed to range between 34.7 and 65.5% depending on the API load and roll pressure, whilst the API attrition was equivalent across all conditions.
Collapse
Affiliation(s)
- James Clarke
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - John F Gamble
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK.
| | - John W Jones
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK
| | - Mike Tobyn
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK
| | - Andrew Ingram
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Greenwood
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Holmfred E, Hirschberg C, Rantanen J. Compaction Properties of Particulate Proteins in Binary Powder Mixtures with Common Excipients. Pharmaceutics 2023; 16:19. [PMID: 38258030 PMCID: PMC10819481 DOI: 10.3390/pharmaceutics16010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing interest in protein- and peptide-based oral pharmaceuticals has culminated in the first protein-based products for oral delivery becoming commercially available. This study investigates the compaction properties of proteins in binary mixtures with common excipients up to 30% (w/w) of particulate protein. Two model proteins, lysozyme and bovine serum albumin, were compacted with either microcrystalline cellulose, spray-dried lactose monohydrate, or calcium hydrogen phosphate dihydrate at two different compaction pressures. Compared to the compacted pure materials, a significant increase in the tensile strength of the compacts was observed for the binary blends containing lysozyme together with the brittle excipients. This could be attributed to the increased bonding forces between the particles in the blend compared to the pure materials. The use of bovine serum albumin with a larger particle size resulted in a decrease in tensile strength for all the compacts. The change in the tensile strength with an increasing protein content was non-linear for both proteins. This work highlights the importance of considering the particulate properties of protein powders and that protein-based compacts can be designed with similar principles as small-molecules in terms of their mechanical tablet properties.
Collapse
Affiliation(s)
| | | | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Gerberich BG, Okoh GA, DiNunzio JC, Lowinger MB. Pediatric Mini-Tablets: Predicting the Hidden Risk of Fill Errors. Pharmaceutics 2023; 15:pharmaceutics15020594. [PMID: 36839916 PMCID: PMC9961976 DOI: 10.3390/pharmaceutics15020594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 02/12/2023] Open
Abstract
Compressed mini-tablets in sachets or capsules are an increasingly prevalent oral solid dosage form for pediatric products. While resembling adult tablets, additional care is required to control weight and potency (blend uniformity) variation due to their small size (≤2.5 mm average diameter). Additionally, sachet fill count errors complicate dose accuracy as they are difficult to resolve with weight-checking equipment. This study quantified the probability of failing content uniformity (CU) specifications (which results in the inability to release a batch) defined in USP <905> using a Monte Carlo computational model. Failure risk was modeled as a function of sachet fill count, mini-tablet weight, potency distribution, and fill error frequency. The model allows product developers to (1) determine appropriate fill counts based on anticipated product weight and potency relative standard deviation (RSD), (2) set fill error probability tolerances for sachet filling processes, (3) identify CU improvement opportunities, and (4) quantify the probability of CU failure informing risk management activities and risk disclosure for regulatory agencies. A representative product with weight and potency RSD no greater than 5%, fill count of 1-4 mini-tablets per sachet, and fill error probability per mini-tablet filled of 0.1% may experience CU batch failure probabilities as high as 8.23%, but only 0.283% if the fill count is increased to 5-10 mini-tablets per sachet. Generally, fill counts of less than five mini-tablets per sachet should be avoided where possible.
Collapse
|
7
|
Zhao H, Shi C, Zhao L, Wang Y, Shen L. Influences of different microcrystalline cellulose (MCC) grades on tablet quality and compression behavior of MCC-lactose binary mixtures. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wünsch I, Henrik Finke J, John E, Juhnke M, Kwade A. Influence of the drug deformation behaviour on the predictability of compressibility and compactibility of binary mixtures. Int J Pharm 2022; 626:122117. [PMID: 35985527 DOI: 10.1016/j.ijpharm.2022.122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Various studies investigate the predictability of the compressibility and compactibility of tablet formulations based on the behaviour of the pure materials. However, these studies are limited to a few materials so far probably because of the complexity of the powder compaction process. One approach preventing the excessive increase in complexity is the extension of the investigations from pure materials to binary powder mixtures. The focus of this study is on the predictability of the compressibility and compactibility of binary mixtures consisting of an active pharmaceutical ingredient (API) and the excipient microcrystalline cellulose. Three APIs with markedly different deformation behaviour were used. The API concentration and type are systematically varied. For all three material combinations it is found that the in-die compressibility of the binary mixtures can be precisely predicted based on the characteristic compression parameters of the raw materials using the extended in-die compression function in combination with a volume-based linear mixing rule. Since the tablet porosity (out-of-die) also follows a linear mixing rule, the predictability can be further extended using the method of Katz et al. In contrast, the influence of the API concentration on compactibility or rather on tablet tensile strength is non-linear and strongly dependent on the deformation behaviour of the API, making the predictability more difficult. Neither the approach of Reynolds et al. nor this of Kuentz and Leuenberger are able to predict the compactibility when clear deviations from a linear mixing rule appear.
Collapse
Affiliation(s)
- Isabell Wünsch
- Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104, Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Jan Henrik Finke
- Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104, Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | | | | | - Arno Kwade
- Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104, Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Predictive modelling of powder compaction for binary mixtures using the finite element method. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Texture and surface feature-mediated striking improvements on multiple direct compaction properties of Zingiberis Rhizoma extracted powder by coprocessing with nano-silica. Int J Pharm 2021; 603:120703. [PMID: 33989749 DOI: 10.1016/j.ijpharm.2021.120703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The study aims to markedly improve direct compaction (DC) properties of Zingiberis Rhizoma extracted powder (ZR) by modifying its texture and surface properties with nano-silica (NS). A wet coprocessing method was applied to evenly distribute up to 33.3% NS to ZR. To clarify uniqueness of NS, microcrystalline cellulose (MCC), a superior filler-binder in DC, was used as control. Coprocessed particles and physical mixtures (PMs) were comprehensively evaluated for surface features, micromeritic properties, and texture and compacting parameters. Compared to MCC, NS could more significantly modify the texture and surface features of ZR (e.g., hardness, cohesiveness, yield pressure, and nanoscaled surface roughness) via coprocessing, resulting in more striking improvements on multiple DC properties of ZR, including tabletability, flowability, lubricant sensitivity, hygroscopicity, etc. Especially, tensile strength (σt) of coprocessed ZR-NS (1:0.5) tablets was 4.62 and 3.22 times that of ZR and ZR-MCC counterparts pressed at 210 MPa, respectively. Moreover, percolation thresholds of σt enhancement were observed for ZR-NSs, but not for ZR-MCCs. Evaluation by the SeDeM expert system indicated that some ZR-NSs (but no ZR-MCCs) were qualified for DC. Collectively, coprocessing with NS by liquid dispersion appears to be a novel, effective, and pragmatic option for DC of drugs like ZR.
Collapse
|
11
|
Queiroz ALP, Wood B, Faisal W, Farag F, Garvie-Cook H, Glennon B, Vucen S, Crean AM. Application of percolation threshold to disintegration and dissolution of ibuprofen tablets with different microcrystalline cellulose grades. Int J Pharm 2020; 589:119838. [PMID: 32890656 DOI: 10.1016/j.ijpharm.2020.119838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/28/2022]
Abstract
The study presented was conducted to determine whether a percolation threshold value, previously determined for ibuprofen/microcrystalline cellulose (MCC) blends using percolation theory and compression data (Queiroz et al., 2019), could translate to tablet disintegration and dissolution data. The influence of MCC grade (air stream dried versus spray dried) on tablet disintegration and dissolution was also investigated. Complementary to conventional disintegration and dissolution testing, Raman imaging determined drug distribution within tablets, and in-line particle video microscopy (PVM) and focused-beam reflectance measurement (FBRM) monitored tablet disintegration. Tablets were prepared containing 0-30% w/w ibuprofen. Raman imaging confirmed the percolation threshold by quantifying the number and equivalent circular diameters of ibuprofen domains on tablet surfaces. Across the percolation threshold, a step change in dissolution behaviour occurred, and tablets containing air stream dried MCC showed slower disintegration rates compared to tablets containing spray dried MCC. Dissolution measurements confirmed experimentally a percolation threshold in agreement with that determined using percolation theory and compression data. An increase in drug domains, due to cluster formation, and less efficient tablet disintegration contributed to slower ibuprofen dissolution above the percolation threshold. Slower dissolution was measured for tablets containing air stream dried compared to spray dried MCC.
Collapse
Affiliation(s)
- Ana Luiza P Queiroz
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland
| | - Barbara Wood
- SSPC Pharmaceutical Research Centre, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; APC Ltd, Cherrywood Business Park, Loughlinstown, Co Dublin, Ireland
| | - Waleed Faisal
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland; School of Pharmacy, Minia University, Al Minyā, Egypt
| | - Fatma Farag
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland; School of Pharmacy, Minia University, Al Minyā, Egypt
| | - Hazel Garvie-Cook
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire GL12 8JR, UK
| | - Brian Glennon
- SSPC Pharmaceutical Research Centre, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; APC Ltd, Cherrywood Business Park, Loughlinstown, Co Dublin, Ireland
| | - Sonja Vucen
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland
| | - Abina M Crean
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Moroney KM, Cronin P, Adeleye OA, Schaller BE, Howard MA, Castro-Dominguez B, Ramachandran R, Walker GM. An evaluation of the Johanson model for roller compaction process development for a high dose API. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Yu J, Xu B, Zhang K, Shi C, Zhang Z, Fu J, Qiao Y. Using a Material Library to Understand the Impacts of Raw Material Properties on Ribbon Quality in Roll Compaction. Pharmaceutics 2019; 11:pharmaceutics11120662. [PMID: 31817930 PMCID: PMC6956229 DOI: 10.3390/pharmaceutics11120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study is to use a material library to investigate the effect of raw material properties on ribbon tensile strength (TS) and solid fraction (SF) in the roll compaction (RC) process. A total of 81 pharmaceutical materials, including 53 excipients and 28 natural product powders (NPPs), were characterized by 22 material descriptors and were compacted under five different hydraulic pressures. The transversal and longitudinal splitting behaviors of the ribbons were summarized. The TS-porosity and TS-pressure relationships were used to explain the roll compaction behavior of powdered materials. Through defining the target ribbon quality (i.e., 0.6 ≤ SF ≤ 0.8 and TS ≥ 1 MPa), the roll compaction behavior classification system (RCBCS) was built and 81 materials were classified into three categories. A total of 24 excipients and five NPPs were classified as Category I materials, which fulfilled the target ribbon quality and had less occurrence of transversal splitting. Moreover, the multivariate relationships between raw material descriptors, the hydraulic pressure and ribbon quality attributes were obtained by PLS regression. Four density-related material descriptors and the cohesion index were identified as critical material attributes (CMAs). The multi-objective design space summarizing the feasible material properties and operational region for the RC process were visualized. The RCBCS presented in this paper enables a formulator to perform the initial risk assessment of any new materials, and the data modeling method helps to predict the impact of formulation ingredients on strength and porosity of compacts.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
| | - Bing Xu
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Correspondence: (B.X.); (Y.Q.); Tel.: +86-010-53912117 (B.X.)
| | - Kunfeng Zhang
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
| | - Chenfeng Shi
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
| | - Zhiqiang Zhang
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Beijing Tcmages Pharmceutical Co. LTD, Beijing 101301, China
| | - Jing Fu
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Beijing Tcmages Pharmceutical Co. LTD, Beijing 101301, China
| | - Yanjiang Qiao
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Correspondence: (B.X.); (Y.Q.); Tel.: +86-010-53912117 (B.X.)
| |
Collapse
|