1
|
Wu J, Xu Y, Wu D, Zhou W, Wang P, Gong J, Yang J, Xia X. Melanin/melanin-like nanoparticles in tumor photothermal and targeted therapies. Int J Pharm 2025; 672:125354. [PMID: 39952417 DOI: 10.1016/j.ijpharm.2025.125354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Melanin is a pigment found in nature that has good photothermal conversion qualities as well as stability, adaptability, and ease of manufacture. In addition to displaying the inherent properties of melanin, melanin/melanin-like nanoparticles (NPs) also have strong dispersion stability, excellent biocompatibility and biodegradability. Melanin/melanin-like NPs have been extensively studied for tumor therapy due to their unique photothermal properties and ability to target tumor cells. They have demonstrated particular promise in photothermal therapy of cancers. Using photothermal conversion materials to create a thermal effect by light irradiation, photothermal therapy (PTT) is a therapeutic approach that kills tumor cells locally. In this paper, we firstly review the preparation methods and physicochemical properties of melanin/melanin-like NPs, and then systematically and in-depth describe the recent advances of melanin/melanin-like NPs, especially synthetic polydopamine (PDA) melanin, in oncology applications, mainly focusing on tumor photothermal and targeted therapies. In addition, we summarize the advantages of melanin/melanin-like NPs in improving the efficacy of photothermal therapy, reducing toxic side effects, and enhancing tumor targeting, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Jing Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yilin Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Donghai Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Wei Zhou
- Hunan Provincial Drug Review and Inspection Center, China
| | - Pingjie Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Jing Gong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Jing Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China.
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China.
| |
Collapse
|
2
|
Al-Assaf HA, Papadimitriou SA, Rahman A, Badhan R, Mohammed AR. Advanced Manufacturing Methods for High-Dose Inhalable Powders. Pharmaceutics 2025; 17:359. [PMID: 40143023 PMCID: PMC11946774 DOI: 10.3390/pharmaceutics17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Pulmonary drug delivery is governed by three main categories of forces: interparticle forces in the powder formulation, the dispersion forces during inhalation by the device, and deposition forces in the lungs. The interaction between fine inhalable powder particles of the active ingredient is governed by various types of forces, such as capillary forces, electrostatic forces, and van der Waals forces. The different types of inter-particle interactions influence the balance between powder dispersibility and agglomerate stability. The high level of cohesion forces arising from high surface energy of very fine powder hinders powder flowability, leading to issues of agglomeration. Therefore, there is a critical need for advanced manufacturing techniques to overcome the challenges of handling and manufacture of fine cohesive particles, particularly high-dose powders for inhalation. This review will focus on the challenges facing the formulation process of very fine inhalable powder, the various types of existing particle engineering techniques for high-dose powder inhalers, and the characterization techniques employed to analyse the powder characteristics required to meet the acceptance criteria of inhalable preparations.
Collapse
Affiliation(s)
- Haia A. Al-Assaf
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (H.A.A.-A.); (R.B.)
| | | | - Ayesha Rahman
- Dentistry, School of Health Sciences, University of Birmingham, Birmingham B5 7EG, UK;
| | - Raj Badhan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (H.A.A.-A.); (R.B.)
| | - Afzal R. Mohammed
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (H.A.A.-A.); (R.B.)
| |
Collapse
|
3
|
Aranda-Barradas ME, Coronado-Contreras HE, Aguilar-Castañeda YL, Olivo-Escalante KD, González-Díaz FR, García-Tovar CG, Álvarez-Almazán S, Miranda-Castro SP, Del Real-López A, Méndez-Albores A. Effect of Different Karyophilic Peptides on Physical Characteristics and In Vitro Transfection Efficiency of Chitosan-Plasmid Nanoparticles as Nonviral Gene Delivery Systems. Mol Biotechnol 2025; 67:723-733. [PMID: 38400988 PMCID: PMC11711767 DOI: 10.1007/s12033-024-01087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.
Collapse
Affiliation(s)
- María Eugenia Aranda-Barradas
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México.
| | - Héctor Eduardo Coronado-Contreras
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Yareli Lizbeth Aguilar-Castañeda
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Karen Donají Olivo-Escalante
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Francisco Rodolfo González-Díaz
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Carlos Gerardo García-Tovar
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Samuel Álvarez-Almazán
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Susana Patricia Miranda-Castro
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Alicia Del Real-López
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Juriquilla La Mesa, 76230, Santiago de Querétaro, México
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| |
Collapse
|
4
|
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Soghrati S. Co-delivery of Interferon Regulatory Factor 5 (IRF5) siRNA and dasatinib by a disulfide bond bearing polymeric carrier for enhanced anti-inflammatory effects. Int J Biol Macromol 2024; 282:137094. [PMID: 39486736 DOI: 10.1016/j.ijbiomac.2024.137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Co-delivery of chemical drugs and nucleic acids has attracted a great interest recently for treatment of inflammatory diseases. Dasatinib (DB), a tyrosine kinase inhibitor with anti-cancer effects, and Interferon Regulatory Factor 5 (IRF5) siRNA have shown anti-inflammatory effects. In the present study, a novel redox-responsive polymeric micelle was designed for co-delivery of DB and IRF5 siRNA-expressing plasmid (psiRF5) to enhance anti-inflammatory effects on macrophages. psiRF5 was condensed efficiently to redox-responsive micelles of DB-conjugated chitosan (CN) composed of disulfide bond, from different molecular weights of CN to form CN-SS-DB/psiRF5 micelles. The micelles with optimum N/P ratios had particle sizes of 287.8 and 245.4 nm and positive zeta potentials. The disulfide bond bearing micelles showed a redox-responsive drug release, protected the plasmid from being dissociated or degraded in exposure with heparin, serum and DNase I, and significantly enhanced the transfection efficiency and IRF5-gene silencing compared to naked psiRF5. The optimum micelles exhibited a dramatic reduction in IRF5 expression and revealed a notably higher anti-inflammatory effect than either DB or psiRF5, as indicated by more IL-10 and less IL-6 and TNF-α production by LPS-stimulated RAW264.7 macrophages incubated with the co-delivery system. The resultant nanocarriers might be promising for more effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hamed Vakilzadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sahel Soghrati
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Bocca B, Battistini B. Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance. Nanotoxicology 2024; 18:1-35. [PMID: 38436298 DOI: 10.1080/17435390.2023.2301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Babbal, Mohanty S, Khasa YP. Designing Ubiquitin-like protease 1 (Ulp1) based nano biocatalysts: A promising technology for SUMO fusion proteins. Int J Biol Macromol 2024; 255:128258. [PMID: 37984574 DOI: 10.1016/j.ijbiomac.2023.128258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The SUMO proteases (Ulps), a group of cysteine proteases, are well known for their efficient ability to perform structure-based cleavage of SUMO tag from the protein of interest and generation of biotherapeutics with authentic N-terminus. However, the stability of Ulps has remained a challenge for the economical production of difficult-to-produce proteins in E. coli. Therefore, the present study aimed to establish the methodology for developing stable S. pombe Ulp1 preparation using different enzyme immobilization strategies. The whole-cell biocatalyst developed using the Pir1 anchor protein of Pichia cleaved the SUMO tag within 24 h of reaction incubation. The chemical immobilization using commercial epoxy and amino methacrylate beads significantly enhanced the operational reusability of SpUlp1 up to 24 cycles. Silica beads further improved the repetitive usage of the immobilized enzyme for 65 cycles. The SpUlp1 immobilization on laboratory-developed chitosan-coated iron oxide nanoparticles exhibited more than 90 % cleavage of SUMO tag from different substrates even after 100 consecutive reactions. Moreover, an effective SUMO tag removal was observed within 10 min of incubation. The operational stability of the immobilized enzyme was confirmed in a pH range of 5 to 13. The spherical nature of nanoparticles was confirmed by FESEM and TEM results. The successful chitosan coating and subsequent activation with glutaraldehyde were established via FT-IR. Furthermore, HRTEM, SAED, and XRD proved the crystalline nature of nanoparticles, while VSM confirmed the superparamagnetic behavior.
Collapse
Affiliation(s)
- Babbal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
7
|
Vyas D, Wairkar S. Effect of variables on exemestane-loaded albumin nanoparticles: statistical optimization and anti-cancer activity in MCF-7 cell lines. Pharm Dev Technol 2023; 28:1048-1055. [PMID: 37987762 DOI: 10.1080/10837450.2023.2285925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
This research aimed to evaluate the effect of variables on exemestane-loaded bovine serum albumin nanoparticles (EXE-BSA NPs) to improve anti-breast cancer activity. EXE-BSA NPs were optimized using 32 factorial design, wherein the concentration of BSA (X1) and sonication time (X2) were independent variables and particle size (Y1) and %w/w entrapment efficiency (Y2) were dependent variables. The statistical optimization revealed a significant effect of BSA concentration on both variables, whereas sonication time affected only particle size. The optimized EXE-BSA NPs were spherical with 124.1 ± 2.62 nm particle size, 83.95 ± 1.06% w/w drug entrapment, and exhibited a biphasic release of 100% (w/w) drug over 72 h. The optimized formulation induced cytotoxicity in MCF-7 cell lines with an IC50 value of 21.46 µg/mL by MTT assay, almost half the free drug (54.87 µg/mL). Thus, statistically optimized EXE-BSA NPs were effective in MCF-7 cell lines and can be explored to treat estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai, India
| |
Collapse
|
8
|
Aldabagh DJ, Alzubadi TL, Alhuwaizi AF. Tribology of Coated 316L SS by Various Nanoparticles. Int J Biomater 2023; 2023:6676473. [PMID: 37649637 PMCID: PMC10465258 DOI: 10.1155/2023/6676473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Background Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS), which is thought to be one of the most popular alloys for stainless steel orthodontic archwires. The friction of coated 316L SS archwires coated with Ta, Nb, and V plasma sputtering is hardly mentioned in the literature as of yet. Results An oscillating pin-on-plate tribological test using a computerized tribometer was performed by applying a load of 1 N for 20 minutes under the dry condition at room temperature (25°C) to understand their role in the tribological behavior of the bulk material. Ta and Nb were found to reduce the friction of their SS substrate significantly (45 and 55%, respectively), while V was found to deteriorate the friction of its substrate. Moreover, sputtering time had no substantial role in the friction reduction of coatings. Conclusions Nanocoating of 316L SS bulk material by Nb and Ta with a 1-hour plasma sputtering time can enhance dramatically its tribological behavior. Higher coating hardness, smaller nanoparticle size, intermediate surface coating roughness, and lower surface binding energy of the coatings may play a vital role in friction reduction of the coated 316L SS corresponding to SS orthodontic archwires, predicting to enhance orthodontic treatment.
Collapse
Affiliation(s)
- Dhiaa J. Aldabagh
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad 00964, Iraq
| | - Thair L. Alzubadi
- Department of Prosthodontics Dental Techniques, Al-Esraa University College, Baghdad 00964, Iraq
| | - Akram F. Alhuwaizi
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad 00964, Iraq
| |
Collapse
|
9
|
Herdiana Y, Wathoni N, Gozali D, Shamsuddin S, Muchtaridi M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030879. [PMID: 36986740 PMCID: PMC10051865 DOI: 10.3390/pharmaceutics15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Despite recent advances, cancer remains the primary killer on a global scale. Numerous forms of research have been conducted to discover novel and efficient anticancer medications. The complexity of breast cancer is a major challenge which is coupled with patient-to-patient variations and heterogeneity between cells within the tumor. Revolutionary drug delivery is expected to provide a solution to that challenge. Chitosan nanoparticles (CSNPs) have prospects as a revolutionary delivery system capable of enhancing anticancer drug activity and reducing negative impacts on normal cells. The use of smart drug delivery systems (SDDs) as delivering materials to improve the bioactivity of NPs and to understand the intricacies of breast cancer has garnered significant interest. There are many reviews about CSNPs that present various points of view, but they have not yet described a series in cancer therapy from cell uptake to cell death. With this description, we will provide a more complete picture for designing preparations for SDDs. This review describes CSNPs as SDDSs, enhancing cancer therapy targeting and stimulus response using their anticancer mechanism. Multimodal chitosan SDDs as targeting and stimulus response medication delivery will improve therapeutic results.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), USM, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
10
|
Barani M, Hajinezhad MR, Shahraki S, Mirinejad S, Razlansari M, Sargazi S, Rahdar A, Díez-Pascual AM. Preparation, characterization, and toxicity assessment of carfilzomib-loaded nickel-based metal-organic framework: Evidence from in-vivo and in-vitro experiments. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
11
|
Aranda-Barradas ME, Trejo-López SE, Real AD, Álvarez-Almazán S, Méndez-Albores A, García-Tovar CG, González-Díaz FR, Miranda-Castro SP. Effect of molecular weight of chitosan on the physicochemical, morphological, and biological properties of polyplex nanoparticles intended for gene delivery. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Liaparinos P, Michail C, Valais I, Fountos G, Karabotsos A, Kandarakis I. Grain Size Distribution Analysis of Different Activator Doped Gd 2O 2S Powder Phosphors for Use in Medical Image Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:8702. [PMID: 36433300 PMCID: PMC9695128 DOI: 10.3390/s22228702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The structural properties of phosphor materials, such as their grain size distribution (GSD), affect their overall optical emission performance. In the widely used gadolinium oxysulfide (Gd2O2S) host material, the type of activator is one significant parameter that also changes the GSD of the powder phosphor. For this reason, in this study, different phosphors samples of Gd2O2S:Tb, Gd2O2S:Eu, and Gd2O2S:Pr,Ce,F, were analyzed, their GSDs were experimentally determined using the scanning electron microscopy (SEM) technique, and thereafter, their optical emission profiles were investigated using the LIGHTAWE Monte Carlo simulation package. Two sets of GSDs were examined corresponding to approximately equal mean particle size, such as: (i) 1.232 μm, 1.769 μm and 1.784 μm, and (ii) 2.377 μm, 3.644 μm and 3.677 μm, for Tb, Eu and Pr,Ce,F, respectively. The results showed that light absorption was almost similar, for instance, 25.45% and 8.17% for both cases of Eu dopant utilizing a thin layer (100 μm), however, given a thicker layer (200 μm), the difference was more obvious, 22.82%. On the other hand, a high amount of light loss within the phosphor affects the laterally directed light quanta, which lead to sharper distributions and therefore to higher resolution properties of the samples.
Collapse
Affiliation(s)
- Panagiotis Liaparinos
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece
| | - Christos Michail
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece
| | - Ioannis Valais
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece
| | - George Fountos
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece
| | - Athanasios Karabotsos
- Department of Conservation of Antiquities and Works of Art, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece
| | - Ioannis Kandarakis
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece
| |
Collapse
|
13
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Deep learning detection of nanoparticles and multiple object tracking of their dynamic evolution during in situ ETEM studies. Sci Rep 2022; 12:2484. [PMID: 35169206 PMCID: PMC8847623 DOI: 10.1038/s41598-022-06308-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
In situ transmission electron microscopy (TEM) studies of dynamic events produce large quantities of data especially under the form of images. In the important case of heterogeneous catalysis, environmental TEM (ETEM) under gas and temperature allows to follow a large population of supported nanoparticles (NPs) evolving under reactive conditions. Interpreting properly large image sequences gives precious information on the catalytic properties of the active phase by identifying causes for its deactivation. To perform a quantitative, objective and robust treatment, we propose an automatic procedure to track nanoparticles observed in Scanning ETEM (STEM in ETEM). Our approach involves deep learning and computer vision developments in multiple object tracking. At first, a registration step corrects the image displacements and misalignment inherent to the in situ acquisition. Then, a deep learning approach detects the nanoparticles on all frames of video sequences. Finally, an iterative tracking algorithm reconstructs their trajectories. This treatment allows to deduce quantitative and statistical features about their evolution or motion, such as a Brownian behavior and merging or crossing events. We treat the case of in situ calcination of palladium (oxide) / delta-alumina, where the present approach allows a discussion of operating processes such as Ostwald ripening or NP aggregative coalescence.
Collapse
|
15
|
Chapple R, Chivas-Joly C, Kose O, Erskine EL, Ferry L, Lopez-Cuesta JM, Kandola BK, Forest V. Graphene oxide incorporating carbon fibre-reinforced composites submitted to simultaneous impact and fire: Physicochemical characterisation and toxicology of the by-products. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127544. [PMID: 34879530 DOI: 10.1016/j.jhazmat.2021.127544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The toxicological profile of particulates released from carbon fibre-reinforced composites (CFC) incorporating nanoadditives, under impact and fire conditions (e.g. aircraft crash), is unknown to date. Our aim was to investigate the effects of simultaneous impact and fire on the physicochemical features of the particles released from CFCs produced from a graphene oxide (GO)-reinforced epoxy resin and the consequences on its toxicological profile. CFC samples with (CFC + GO) or without GO (CFC) were subjected to simultaneous impact and fire through a specific setup. Soot and residues were characterised and their toxicity was compared to that of virgin GO. Virgin GO was not cytotoxic but induced pro-inflammatory and oxidative stress responses. The toxicity profile of CFC was similar for soot and residue: globally not cytotoxic, inducing a pro-inflammatory response and no oxidative stress. However, an increased cytotoxicity at the highest concentration was potentially caused by fibres of reduced diameters or fibril bundles, which were observed only in this condition. While the presence of GO in CFC did not alter the cytotoxicity profile, it seemed to drive the pro-inflammatory and oxidative stress response in soot. On the contrary, in CFC + GO residue the biological activity was decreased due to the physicochemical alterations of the materials.
Collapse
Affiliation(s)
- Robert Chapple
- IMRI, University of Bolton, Deane Road, Bolton BL3 5AB, United Kingdom
| | - Carine Chivas-Joly
- LNE - Centre for Scientific and Industrial Metrology, CARMEN Plateform, 29, Avenue Roger Hennequin, 78197 Trappes, France
| | - Ozge Kose
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | | | - Laurent Ferry
- PCH, IMT Mines Alès, 6 Avenue de Clavières, 30319 Alès Cedex, France
| | | | | | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France.
| |
Collapse
|
16
|
Bouzakher-Ghomrasni N, Taché O, Leroy J, Feltin N, Testard F, Chivas-Joly C. Dimensional measurement of TiO 2 (Nano) particles by SAXS and SEM in powder form. Talanta 2021; 234:122619. [PMID: 34364428 DOI: 10.1016/j.talanta.2021.122619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
The market for nano-additive materials has been growing exponentially since 2012, with almost 5040 consumer products containing nanoparticles in 2021. In parallel, the increasing recommendations, definitions and legislations underline the need for traceability of manufactured nanoparticles and for methods able to identify and quantify the "nano" dimensional character in manufactured product. From a multi-technic approach, this paper aims to compare the mesurands extracted from SAXS/BET (specific surface area) and SEM (diameter equivalent to a projected surface area) on different TiO2 powder issued from referenced, synthesized materials, raw materials (additives) and extracted materials from manufactured products. The influence of various parameters such as the anisotropic factor, the interaction between particles, the size distribution and the extraction steps are discussed to illustrate their impact on the diameter values issued from two different measurands. These results illustrate the difficulties in (nano)particles characterization. SEM and SAXS are complementary techniques depending on the level of dimensional characterization required.
Collapse
Affiliation(s)
- Najoua Bouzakher-Ghomrasni
- Laboratoire National de Métrologie et D'Essais, Nanometrology, CARMEN Platform, 29 Avenue Hennequin, 78197, Trappes Cedex, France
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Jocelyne Leroy
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Nicolas Feltin
- Laboratoire National de Métrologie et D'Essais, Nanometrology, CARMEN Platform, 29 Avenue Hennequin, 78197, Trappes Cedex, France
| | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Carine Chivas-Joly
- Laboratoire National de Métrologie et D'Essais, Nanometrology, CARMEN Platform, 29 Avenue Hennequin, 78197, Trappes Cedex, France.
| |
Collapse
|
17
|
Kosmulski M. The pH dependent surface charging and points of zero charge. IX. Update. Adv Colloid Interface Sci 2021; 296:102519. [PMID: 34496320 DOI: 10.1016/j.cis.2021.102519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
of the points of zero charge (PZC) and isoelectric points (IEP) of various materials published in the recent literature and of older results overlooked in the previous compilations. The roles of experimental conditions, especially of the temperature, of the nature and concentration of supporting electrolyte, and of the type of apparatus are emphasized. The newest results are compared with the zero points reported in previous reviews. Most recent studies were carried out with materials whose pH dependent surface charging is already well-documented, and the newest results are consistent with the older literature. Isoelectric points of Gd(OH)3, Sm(OH)3, and TeO2 have been reported for the first time in the recent literature.
Collapse
Affiliation(s)
- Marek Kosmulski
- Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.
| |
Collapse
|
18
|
de Oliveira LC, de Menezes DLB, da Silva VC, Lourenço EMG, Miranda PHS, da Silva MDJA, Lima ES, Júnior VFDV, Marreto RN, Converti A, Barbosa EG, de Lima ÁAN. In Silico Study, Physicochemical, and In Vitro Lipase Inhibitory Activity of α, β-Amyrenone Inclusion Complexes with Cyclodextrins. Int J Mol Sci 2021; 22:9882. [PMID: 34576044 PMCID: PMC8468659 DOI: 10.3390/ijms22189882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
α,β-amyrenone (ABAME) is a triterpene derivative with many biological activities; however, its potential pharmacological use is hindered by its low solubility in water. In this context, the present work aimed to develop inclusion complexes (ICs) of ABAME with γ- and β-cyclodextrins (CD), which were systematically characterized through molecular modeling studies as well as FTIR, XRD, DSC, TGA, and SEM analyses. In vitro analyses of lipase activity were performed to evaluate possible anti-obesity properties. Molecular modeling studies indicated that the CD:ABAME ICs prepared at a 2:1 molar ratio would be more stable to the complexation process than those prepared at a 1:1 molar ratio. The physicochemical characterization showed strong evidence that corroborates with the in silico results, and the formation of ICs with CD was capable of inducing changes in ABAME physicochemical properties. ICs was shown to be a stronger inhibitor of lipase activity than Orlistat and to potentiate the inhibitory effects of ABAME on porcine pancreatic enzymes. In conclusion, a new pharmaceutical preparation with potentially improved physicochemical characteristics and inhibitory activity toward lipases was developed in this study, which could prove to be a promising ingredient for future formulations.
Collapse
Affiliation(s)
- Luana Carvalho de Oliveira
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Danielle Lima Bezerra de Menezes
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Valéria Costa da Silva
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Estela Mariana Guimarães Lourenço
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Paulo Henrique Santana Miranda
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Márcia de Jesus Amazonas da Silva
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | - Emerson Silva Lima
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | | | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, I-16145 Genoa, Italy;
| | - Euzébio Guimaraes Barbosa
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Ádley Antonini Neves de Lima
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| |
Collapse
|
19
|
Physicochemical characterization and targeting performance of triphenylphosphonium nano-polyplexes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Verma ML, Dhanya B, Sukriti, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int J Biol Macromol 2020; 154:390-412. [DOI: 10.1016/j.ijbiomac.2020.03.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
|