1
|
Das BB. A Review of Contemporary and Future Pharmacotherapy for Chronic Heart Failure in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:859. [PMID: 39062308 PMCID: PMC11276462 DOI: 10.3390/children11070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
This review delves into the most recent therapeutic approaches for pediatric chronic heart failure (HF) as proposed by the International Society for Heart and Lung Transplantation (ISHLT), which are not yet publicly available. The guideline proposes an exhaustive overview of the evolving pharmacological strategies that are transforming the management of HF in the pediatric population. The ISHLT guidelines recognize the scarcity of randomized clinical trials in children, leading to a predominance of consensus-based recommendations, designated as Level C evidence. This review article aims to shed light on the significant paradigm shifts in the proposed 2024 ISHLT guidelines for pediatric HF and their clinical ramifications for pediatric cardiology practitioners. Noteworthy advancements in the updated proposed guidelines include the endorsement of angiotensin receptor-neprilysin inhibitors (ARNIs), sodium-glucose cotransporter 2 inhibitors (SGLT2is), and soluble guanylate cyclase (sGC) stimulators for treating chronic HF with reduced ejection fraction (HFrEF) in children. These cutting-edge treatments show potential for enhancing outcomes in pediatric HFrEF. Nonetheless, the challenge persists in validating the efficacy of therapies proven in adult HFrEF for the pediatric cohort. Furthermore, the proposed ISHLT guidelines address the pharmacological management of chronic HF with preserved ejection fraction (HFpEF) in children, marking a significant step forward in pediatric HF care. This review also discusses the future HF drugs in the pipeline, their mechanism of actions, potential uses, and side effects.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Pediatrics, Heart Center, Mississippi Children's Hospital, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
2
|
Greiner E, Breaux A, Kasten J, Seo J, Ollberding NJ, Spar D, Ryan TD, Lang SM, Tian C, Sawnani H, Villa CR. Cardiac atrial pathology in Duchenne muscular dystrophy. Muscle Nerve 2024; 69:572-579. [PMID: 38426616 DOI: 10.1002/mus.28072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION/AIMS Duchenne muscular dystrophy (DMD) is characterized by fibrofatty replacement of muscle. This has been documented in the ventricular myocardium of DMD patients, but there is limited description of atrial involvement. The purpose of this study is to examine the arrhythmia and ectopy burden in patients with DMD and non-DMD dilated cardiomyopathy (DCM) and to characterize the cardiac histopathologic changes in DMD patients across the disease spectrum. METHODS This was a retrospective analysis of age-matched patients with DMD and non-DMD DCM who received a Holter monitor and cardiac imaging within 100 days of each other between 2010 and 2020. Twenty-four-hour Holter monitors were classified based on the most recent left ventricular ejection fraction at the time of monitoring. Cardiac histopathologic specimens from whole-heart examinations at the time of autopsy from three DMD patients and one DCM patient were reviewed. RESULTS A total of 367 patients with 1299 Holter monitor recordings were included over the study period, with 94% representing DMD patients and 6% non-DMD DCM. Patients with DMD had more atrial ectopy across the cardiac function spectrum (p < 0.05). There was no difference in ventricular ectopy. Four DMD patients developed symptomatic atrial arrhythmias. Autopsy specimens from DMD patients demonstrated fibrofatty infiltration of both atrial and ventricular myocardium. DISCUSSION The atrial myocardium in patients with DMD is unique. Autopsy specimens reveal fibofatty replacement of the atrial myocardium, which may be a nidus for both ectopy and arrhythmias in DMD patients.
Collapse
Affiliation(s)
- Eleanor Greiner
- Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrea Breaux
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer Kasten
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - JangDong Seo
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicholas J Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Spar
- Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas D Ryan
- Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sean M Lang
- Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Cuixia Tian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center & University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hemant Sawnani
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pediatric Pulmonology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chet R Villa
- Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Das B, Deshpande S, Akam-Venkata J, Shakti D, Moskowitz W, Lipshultz SE. Heart Failure with Preserved Ejection Fraction in Children. Pediatr Cardiol 2023; 44:513-529. [PMID: 35978175 DOI: 10.1007/s00246-022-02960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Diastolic dysfunction (DD) refers to abnormalities in the mechanical function of the left ventricle (LV) during diastole. Severe LVDD can cause symptoms and the signs of heart failure (HF) in the setting of normal or near normal LV systolic function and is referred to as diastolic HF or HF with preserved ejection fraction (HFpEF). Pediatric cardiologists have long speculated HFpEF in children with congenital heart disease and cardiomyopathy. However, understanding the risk factors, clinical course, and validated biomarkers predictive of the outcome of HFpEF in children is challenging due to heterogeneous etiologies and overlapping pathophysiological mechanisms. The natural history of HFpEF varies depending upon the patient's age, sex, race, geographic location, nutritional status, biochemical risk factors, underlying heart disease, and genetic-environmental interaction, among other factors. Pediatric onset HFpEF is often not the same disease as in adults. Advances in the noninvasive evaluation of the LV diastolic function by strain, and strain rate analysis with speckle-tracking echocardiography, tissue Doppler imaging, and cardiac magnetic resonance imaging have increased our understanding of the HFpEF in children. This review addresses HFpEF in children and identifies knowledge gaps in the underlying etiologies, pathogenesis, diagnosis, and management, especially compared to adults with HFpEF.
Collapse
Affiliation(s)
- Bibhuti Das
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Shriprasad Deshpande
- Department of Pediatrics, Children's National Hospital, The George Washington University, Washington, DC, USA
| | - Jyothsna Akam-Venkata
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Divya Shakti
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - William Moskowitz
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Steven E Lipshultz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Oishei Children's Hospital, Buffalo, NY, 14203, USA
| |
Collapse
|
4
|
Hassan ES, Ahmad SEA, Mohamad IL, Ahmad FA. The value of modified Ross score in the evaluation of children with severe lower respiratory tract infection admitted to the pediatric intensive care unit. Eur J Pediatr 2023; 182:741-747. [PMID: 36472649 PMCID: PMC9899196 DOI: 10.1007/s00431-022-04737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Heart failure (HF) represents an important cause of morbidity and mortality in children. It is mostly caused by congenital heart disease (CHD) and cardiomyopathy. The Ross HF classification was developed to assess severity in infants and has subsequently been modified to apply to all pediatric ages. The modified Ross classification for children provides a numeric score comparable with the New York Heart Association (NYHA) HF classification for adults. The aim of this work is to investigate the role of modified Ross score in the evaluation of children with severe lower respiratory tract infection admitted to the pediatric intensive care unit (PICU). One hundred and sixty-four children with severe LRTI admitted to the PICU were enrolled in this prospective cohort study, which was carried out at Assiut University Children Hospital, from the start of July 2021 up to the end of December 2021. Sixty patients (36.6%) of studied cases with severe LRTI admitted to PICU had HF. Out of these, 37 (61.7%) had mild HF; 17 (28.3%) had moderate HF, while six cases (10%) had severe HF according to the modified Ross score. The value of modified Ross score was significantly higher in children with heart failure with sensitivity and specificity 100% with cutoff value of 2. Admission to NICU, history of previous ventilation, and prematurity were higher in patients who developed HF. Patients with pulmonary hypertension (PH) and those with raised neutrophil lymphocyte ratio were significantly higher in the group of patients with moderate and severe degree of HF. Conclusion: Modified Ross score is a simple clinical score which may help in assessing and predicting children with severe LRTI. What is Known: • Hear failure is common complication to lower respiratory tract infection. • Modified Ross score was used to predict and classify heart failure in adult with lower respiratory infection. What is New: • Modified Ross score found to be of value in prediction of heart failure in children with lower respiratory tract infection.
Collapse
Affiliation(s)
- Enas Saad Hassan
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | | | - Ismail Lotfy Mohamad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | | |
Collapse
|
5
|
Woulfe KC, Jeffrey DA, Pires Da Silva J, Wilson CE, Mahaffey JH, Lau E, Slavov D, Hailu F, Karimpour-Fard A, Dockstader K, Bristow MR, Stauffer BL, Miyamoto SD, Sucharov CC. Serum response factor deletion 5 regulates phospholamban phosphorylation and calcium uptake. J Mol Cell Cardiol 2021; 159:28-37. [PMID: 34139234 PMCID: PMC8546760 DOI: 10.1016/j.yjmcc.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022]
Abstract
AIMS Pediatric dilated cardiomyopathy (pDCM) is characterized by unique age-dependent molecular mechanisms that include myocellular responses to therapy. We previously showed that pDCM, but not adult DCM patients respond to phosphodiesterase 3 inhibitors (PDE3i) by increasing levels of the second messenger cAMP and consequent phosphorylation of phospholamban (PLN). However, the molecular mechanisms involved in the differential pediatric and adult response to PDE3i are not clear. METHODS AND RESULTS Quantification of serum response factor (SRF) isoforms from the left ventricle of explanted hearts showed that PDE3i treatment affects expression of SRF isoforms in pDCM hearts. An SRF isoform lacking exon 5 (SRFdel5) was highly expressed in the hearts of pediatric, but not adult DCM patients treated with PDE3i. To determine the functional consequence of expression of SRFdel5, we overexpressed full length SRF or SRFdel5 in cultured cardiomyocytes with and without adrenergic stimulation. Compared to a control adenovirus, expression of SRFdel5 increased phosphorylation of PLN, negatively affected expression of the phosphatase that promotes dephosphorylation of PLN (PP2Cε), and promoted faster calcium reuptake, whereas expression of full length SRF attenuated calcium reuptake through blunted phosphorylation of PLN. CONCLUSIONS Taken together, these data indicate that expression of SRFdel5 in pDCM hearts in response to PDE3i contributes to improved function through regulating PLN phosphorylation and thereby calcium reuptake.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Julie Pires Da Silva
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cortney E Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer H Mahaffey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward Lau
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dobromir Slavov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Frehiwet Hailu
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Karen Dockstader
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael R Bristow
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Denver Health Medical Center, Denver, CO, United States
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital of Colorado, Aurora, CO, United States
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
6
|
Woulfe KC, Walker LA. Physiology of the Right Ventricle Across the Lifespan. Front Physiol 2021; 12:642284. [PMID: 33737888 PMCID: PMC7960651 DOI: 10.3389/fphys.2021.642284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 01/27/2023] Open
Abstract
The most common cause of heart failure in the United States is ischemic left heart disease; accordingly, a vast amount of work has been done to elucidate the molecular mechanisms underlying pathologies of the left ventricle (LV) as a general model of heart failure. Until recently, little attention has been paid to the right ventricle (RV) and it has commonly been thought that the mechanical and biochemical properties of the RV are similar to those of the LV. However, therapies used to treat LV failure often fail to improve ventricular function in RV failure underscoring, the need to better understand the unique physiologic and pathophysiologic properties of the RV. Importantly, hemodynamic stresses (such as pressure overload) often underlie right heart failure further differentiating RV failure as unique from LV failure. There are significant structural, mechanical, and biochemical properties distinctive to the RV that influences its function and it is likely that adaptations of the RV occur uniquely across the lifespan. We have previously reviewed the adult RV compared to the LV but there is little known about differences in the pediatric or aged RV. Accordingly, in this mini-review, we will examine the subtle distinctions between the RV and LV that are maintained physiologically across the lifespan and will highlight significant knowledge gaps in our understanding of pediatric and aging RV. Consideration of how RV function is altered in different disease states in an age-specific manner may enable us to define RV function in health and importantly, in response to pathology.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
7
|
Port JD. Potential of AT 1-R-Biased Agonists in Pediatric Heart Failure. JACC Basic Transl Sci 2020; 5:1070-1072. [PMID: 33296444 PMCID: PMC7691276 DOI: 10.1016/j.jacbts.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. David Port
- Department of Medicine, Division of Cardiology, and Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
8
|
Precision Medicine for Heart Failure: Back to the Future. J Am Coll Cardiol 2019; 73:1185-1188. [PMID: 30871702 DOI: 10.1016/j.jacc.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/16/2018] [Accepted: 01/01/2019] [Indexed: 11/21/2022]
|
9
|
Woulfe KC, Bruns DR. From pediatrics to geriatrics: Mechanisms of heart failure across the life-course. J Mol Cell Cardiol 2018; 126:70-76. [PMID: 30458169 DOI: 10.1016/j.yjmcc.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a significant public health problem and a disease with high 5-year mortality. Although age is the primary risk factor for development of HF, it is a disease which impacts patients of all ages. Historically, HF has been studied as a one-size fits all strategy- with the majority of both clinical and basic science investigations employing adult male subjects or adult male pre-clinical animal models. We postulate that inclusion of biological variables in HF studies is necessary to improve our understanding of mechanisms of HF and improve outcomes. In this review, we will discuss age-specific differences in HF patients, particularly focusing on the pediatric and geriatric age groups. In addition, we will also discuss the biological variable of sex. Characterizing and understanding the mechanistic differences in these distinct HF populations can provide insights that will benefit and personalize therapeutic interventions. Further, we propose that future investigations into the cellular mechanisms involved in the developing and juvenile heart may provide valuable insights for targets that would be beneficial in aging patients.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- University of Colorado-Denver; Department of Medicine, Division of Cardiology, 12700 E 19th Ave Aurora, CO, USA.
| | - Danielle R Bruns
- University of Wyoming, Division of Kinesiology & Health, Laramie, WY, USA
| |
Collapse
|