1
|
Salari V, Seshan V, Frankle L, England D, Simon C, Oblak D. Imaging Ultraweak Photon Emission from Living and Dead Mice and from Plants under Stress. J Phys Chem Lett 2025:4354-4362. [PMID: 40272092 DOI: 10.1021/acs.jpclett.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The phenomenon of biological ultraweak photon emission (UPE), that is, extremely low-intensity emission (10-103 photons cm-2 s-1) in the spectral range of 200-1000 nm, has been observed in all living systems that have been examined. Here, we report experiments that exemplify the ability of novel imaging systems to detect variations in UPE for a set of physiologically important scenarios. We use electron-multiplying charge-coupled device (EMCCD) and charge-coupled device (CCD) cameras to capture single visible-wavelength photons with low noise and quantum efficiencies higher than 90%. Our investigation reveals significant contrast between the UPE from live vs dead mice. In plants, we observed that an increase in the temperature and injuries both caused an increase in UPE intensity. Moreover, chemical treatments modified the UPE emission characteristics of plants, particularly the application of a local anesthetic (benzocaine) to injury, which showed the highest emission among the compounds tested. As a result, UPE imaging provides the possibility of non-invasive label-free imaging of vitality in animals and the responses of plants to stress.
Collapse
Affiliation(s)
- V Salari
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - V Seshan
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - L Frankle
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - D England
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - C Simon
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - D Oblak
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
2
|
Cavallini C, Olivi E, Tassinari R, Ventura C. Mechanotransduction, cellular biophotonic activity, and signaling patterns for tissue regeneration. J Biol Chem 2024; 300:107847. [PMID: 39357824 PMCID: PMC11539334 DOI: 10.1016/j.jbc.2024.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Signaling molecules exhibit mechanical oscillations, entailing precise vibrational directionalities. These steering signatures have profound functional implications and are intimately connected with the onset of molecular electric oscillations and biophoton emission. We discuss biophotonic activity as a form of endogenous photobiomodulation, orchestrating the mechano-sensing/-transduction in signaling players. We focus on exogenous photobiomodulation in the form of pulsed wave modulation of selected light wavelengths to direct endogenous biophotonic activity and molecular cellular dynamics. We highlight the relevance of this strategy to target and reprogram the developmental potential of tissue-resident stem cells in damaged tissues, affording precision regenerative medicine without the need for cell or tissue transplantation.
Collapse
Affiliation(s)
| | | | | | - Carlo Ventura
- ELDOR Lab, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Berke J, Gulyás I, Bognár Z, Berke D, Enyedi A, Kozma-Bognár V, Mauchart P, Nagy B, Várnagy Á, Kovács K, Bódis J. Unique algorithm for the evaluation of embryo photon emission and viability. Sci Rep 2024; 14:15066. [PMID: 38956113 PMCID: PMC11220017 DOI: 10.1038/s41598-024-61100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 05/02/2024] [Indexed: 07/04/2024] Open
Abstract
Living cells have spontaneous ultraweak photon emission derived from metabolic reactions associated with physiological conditions. The ORCA-Quest CMOS camera (Hamamatsu Photonics, Japan) is a highly sensitive and essential tool for photon detection; its use with a microscope incubator (Olympus) enables the detection of photons emitted by embryos with the exclusion of harmful visible light. With the application of the second law of thermodynamics, the low-entropy energy absorbed and used by embryos can be distinguished from the higher-entropy energy released and detectable in their environment. To evaluate higher-entropy energy data from embryos, we developed a unique algorithm for the calculation of the entropy-weighted spectral fractal dimension, which demonstrates the self-similar structure of the energy (photons) released by embryos. Analyses based on this structure enabled the distinction of living and degenerated mouse embryos, and of frozen and fresh embryos and the background. This novel detection of ultra-weak photon emission from mouse embryos can provide the basis for the development of a photon emission embryo control system. The ultraweak photon emission fingerprints of embryos may be used for the selection of viable specimens in an ideal dark environment.
Collapse
Affiliation(s)
- József Berke
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Drone Technology and Image Processing, Dennis Gabor University, Budapest, Hungary
| | - István Gulyás
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Zoltán Bognár
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pecs, Pécs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Pécs, Hungary
| | - Dávid Berke
- John Von Neumann Computer Society, Multimedia in Education Section, Budapest, Hungary
| | - Attila Enyedi
- Department of Drone Technology and Image Processing, Dennis Gabor University, Budapest, Hungary
| | - Veronika Kozma-Bognár
- Department of Drone Technology and Image Processing, Dennis Gabor University, Budapest, Hungary
- Dennis Gabor University, Rector's Cabinet, Budapest, Hungary
| | - Péter Mauchart
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pécs, Hungary
| | - Bernadett Nagy
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary.
- HUN-REN-PTE Human Reproduction Research Group, Pécs, Hungary.
- Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pécs, Hungary.
| | - Ákos Várnagy
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pécs, Hungary
| | - Kálmán Kovács
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pécs, Hungary
| | - József Bódis
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pécs, Hungary
| |
Collapse
|
4
|
Sadrzadeh-Afsharazar F, Douplik A. A Phosphenotron Device for Sensoric Spatial Resolution of Phosphenes within the Visual Field Using Non-Invasive Transcranial Alternating Current Stimulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:2512. [PMID: 38676129 PMCID: PMC11053939 DOI: 10.3390/s24082512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
This study presents phosphenotron, a device for enhancing the sensory spatial resolution of phosphenes in the visual field (VF). The phosphenotron employs a non-invasive transcranial alternating current stimulation (NITACS) to modulate brain activity by applying weak electrical currents to the scalp or face. NITACS's unique application induces phosphenes, a phenomenon where light is perceived without external stimuli. Unlike previous invasive methods, NITACS offers a non-invasive approach to create these effects. The study focused on assessing the spatial resolution of NITACS-induced phosphenes, crucial for advancements in visual aid technology and neuroscience. Eight participants were subjected to NITACS using a novel electrode arrangement around the eye orbits. Results showed that NITACS could generate spatially defined phosphene patterns in the VF, varying among individuals but consistently appearing within their VF and remaining stable through multiple stimulations. The study established optimal parameters for vibrant phosphene induction without discomfort and identified electrode positions that altered phosphene locations within different VF regions. Receiver Operating characteristics analysis indicated a specificity of 70.7%, sensitivity of 73.9%, and a control trial accuracy of 98.4%. These findings suggest that NITACS is a promising, reliable method for non-invasive visual perception modulation through phosphene generation.
Collapse
Affiliation(s)
- Faraz Sadrzadeh-Afsharazar
- Photonics Group, Department of Physics, Faculty of Science, Toronto Metropolitan University (Formerly Ryerson University), Toronto, ON M5B 2K3, Canada;
| | - Alexandre Douplik
- Photonics Group, Department of Physics, Faculty of Science, Toronto Metropolitan University (Formerly Ryerson University), Toronto, ON M5B 2K3, Canada;
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre of the Li Ka Shing (LKS) Knowledge Institute, St. Michael Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
5
|
Sefati N, Esmaeilpour T, Salari V, Zarifkar A, Dehghani F, Ghaffari MK, Zadeh-Haghighi H, Császár N, Bókkon I, Rodrigues S, Oblak D. Monitoring Alzheimer's disease via ultraweak photon emission. iScience 2024; 27:108744. [PMID: 38235338 PMCID: PMC10792242 DOI: 10.1016/j.isci.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
In an innovative experiment, we detected ultraweak photon emission (UPE) from the hippocampus of male rat brains and found significant correlations between Alzheimer's disease (AD), memory decline, oxidative stress, and UPE intensity. These findings may open up novel methods for screening, detecting, diagnosing, and classifying neurodegenerative diseases, particularly AD. The study suggests that UPE from the brain's neural tissue can serve as a valuable indicator. It also proposes the development of a minimally invasive brain-computer interface (BCI) photonic chip for monitoring and diagnosing AD, offering high spatiotemporal resolution of brain activity. The study used a rodent model of sporadic AD, demonstrating that STZ-induced sAD resulted in increased hippocampal UPE, which was associated with oxidative stress. Treatment with donepezil reduced UPE and improved oxidative stress. These findings support the potential utility of UPE as a screening and diagnostic tool for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Niloofar Sefati
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salari
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 1N4, Canada
| | | | - István Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary
- Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| | - Serafim Rodrigues
- MCEN Team, Basque Center for Applied Mathematics, Bilbao, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Esmaeilpour T, Lotfealian A, Anvari M, Namavar M, Karbalaei N, Shahedi A, Bokkon I, Salari V, Oblak D. Effect of methamphetamine on ultraweak photon emission and level of reactive oxygen species in male rat brain. Neurosci Lett 2023; 801:137136. [PMID: 36804571 DOI: 10.1016/j.neulet.2023.137136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
All living cells, including neurons, generate ultra-weak photon emission (UPE) during biological activity, and in particular, in the brain, it has been shown that UPE is correlated with neuronal activity and associated metabolic processes. Various intracellular factors, as well as external factors, can reduce or increase the intensity of UPE. In this study, we have used Methamphetamine (METH) as one potentially effective external factor, which is a substance that has the property of stimulating the central nervous system. METH can impair mitochondrial function by causing toxicity via various pathways, including an increase in the number of mitochondria, hyperthermia, the increased metabolic activity of the brain, and the production of glutamate and excess calcium. In addition to mitochondrial dysfunction, METH alters cellular homeostasis, leading to cell damage and the production of excess ROS. The aim of this study is to measure and compare the UPE intensity and reactive oxygen species (ROS) levels of the prefrontal, motor, and visual cortex before and after METH administration. Twenty male rats were randomly assigned to two groups, the control, and METH groups. In the control group, 2 h after injection of normal saline and without any intervention, and in the experimental group 2 h after IP injection of 20 mg/kg METH, sections were prepared from three areas: prefrontal, motor, and V1-V2 cortex, which were used to evaluate the emission of UPE using a photomultiplier tube (PMT) device and to evaluate the amount of ROS. The results showed that the amount of ROS and UPE in the experimental group in all three areas significantly increased compared to the control group. So, METH increases UPE and ROS in the prefrontal, motor, and visual regions, and there is a direct relationship between UPE intensity and ROS production. Therefore, UPE may be used as a dynamic reading tool to monitor oxidative metabolism in physiological processes related to ROS and METH research. Also, the results of this experiment may create a new avenue to test the hypothesis that the excess in UPE generation may lead to the phenomenon of phosphene and visual hallucinations.
Collapse
Affiliation(s)
- Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Lotfealian
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Istvan Bokkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary; Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| | - Vahid Salari
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada.
| | - Daniel Oblak
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
7
|
Kvašňák E, Orendáčová M, Vránová J. Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS. Physiol Res 2022. [DOI: 10.33549/physiolres.934887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Phosphene is the experience of light without natural visual stimulation. It can be induced by electrical stimulation of the retina, optic nerve or cortex. Induction of phosphenes can be potentially used in assistive devices for the blind. Analysis of phosphene might be beneficial for practical reasons such as adjustment of transcranial alternating current stimulation (tACS) frequency and intensity to eliminate phosphene perception (e.g., tACS studies using verum tACS group and sham group) or, on the contrary, to maximize perception of phosphenes in order to be more able to study their dynamics. In this study, subjective reports of 50 healthy subjects exposed to different intensities of retinal tACS at 4 different frequencies (6, 10, 20 and 40 Hz) were analyzed. The effectiveness of different tACS frequencies in inducing phosphenes was at least 92 %. Subject reported 41 different phosphene types; the most common were light flashes and light circles. Changing the intensity of stimulation often induced a change in phosphene attributes. Up to nine phosphene attributes changed when the tACS intensity was changed. Significant positive correlation was observed between number of a different phosphene types and tACS frequency. Based on these findings, it can be concluded that tACS is effective in eliciting phosphenes whose type and attributes change depending on the frequency and intensity of tACS. The presented results open new questions for future research.
Collapse
Affiliation(s)
| | - M Orendáčová
- Third Faculty of Medicine. Charles University. Ruská 87, 100 00 Prague 10. Czech Republic. E-mail:
| | | |
Collapse
|
8
|
Pónya Z, Somfalvi-Tóth K. Modelling biophoton emission kinetics based on the initial intensity value in Helianthus annuus plants exposed to different types of stress. Sci Rep 2022; 12:2317. [PMID: 35145188 PMCID: PMC8831617 DOI: 10.1038/s41598-022-06323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Biophoton radiation also referred to as ultra-weak photon emission (UPE) is used to denote a spontaneous and permanent photon emission associated with oxidative processes in cells and seems to universally occur in all living systems as a result of the generation of reactive oxygen species (ROS) that are produced under stress conditions. The measurement of this biophoton emission allows for a non-invasive approach in monitoring phenological stages throughout plant development which has direct relevance in agriculture research. In this study, the emission of photons emanating from sunflower (Helianthus annuus, L.) plants exposed to biotic and abiotic stress has been investigated. In healthy plants raised under controlled growth conditions UPE was low whereas in stressed individuals it considerably increased; particularly upon water stress. The kinetics of the signal is shown to reveal an exponential decay with characteristic dynamics, which appears to reflect different physiological states concomitantly setting in upon stress. The dynamics of the signal decay is shown to vary according to the type of stress applied (biotic vs. abiotic) hence suggesting a putative relationship between the kinetic traits of change in the signal intensity-decay and stress. Intriguingly, the determination of the change in the intensity of biophoton emission that ensued in a short time course was possible by using the initial biophoton emission intensity. The predictability level of the equations demonstrated the applicability of the model in a corroborative manner when employing it in independent UPE-measurements, thus permitting to forecast the intensity change in a very accurate way over a short time course. Our findings allow the notion that albeit stress confers complex and complicated changes on oxidative metabolism in biological systems, the employment of biophoton imaging offers a feasible method making it possible to monitor oxidative processes triggered by stress in a non-invasive and label-free way which has versatile applications especially in precision agriculture.
Collapse
Affiliation(s)
- Zsolt Pónya
- Agricultural and Food Research Centre, Széchenyi István University, Egyetem tér 1, Győr, H-9026, Hungary.
| | - Katalin Somfalvi-Tóth
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 40. S. Guba str, Kaposvár, H-7400, Hungary
| |
Collapse
|
9
|
Salari V, Rodrigues S, Saglamyurek E, Simon C, Oblak D. Are Brain-Computer Interfaces Feasible With Integrated Photonic Chips? Front Neurosci 2022; 15:780344. [PMID: 35069099 PMCID: PMC8777191 DOI: 10.3389/fnins.2021.780344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The present paper examines the viability of a radically novel idea for brain-computer interface (BCI), which could lead to novel technological, experimental, and clinical applications. BCIs are computer-based systems that enable either one-way or two-way communication between a living brain and an external machine. BCIs read-out brain signals and transduce them into task commands, which are performed by a machine. In closed loop, the machine can stimulate the brain with appropriate signals. In recent years, it has been shown that there is some ultraweak light emission from neurons within or close to the visible and near-infrared parts of the optical spectrum. Such ultraweak photon emission (UPE) reflects the cellular (and body) oxidative status, and compelling pieces of evidence are beginning to emerge that UPE may well play an informational role in neuronal functions. In fact, several experiments point to a direct correlation between UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood flow, cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on the interior surface of the skull may enable a new form of extraction of the relevant features from the UPE signals. In the current technology landscape, photonic technologies are advancing rapidly and poised to overtake many electrical technologies, due to their unique advantages, such as miniaturization, high speed, low thermal effects, and large integration capacity that allow for high yield, volume manufacturing, and lower cost. For our proposed BCI, we are making some very major conjectures, which need to be experimentally verified, and therefore we discuss the controversial parts, feasibility of technology and limitations, and potential impact of this envisaged technology if successfully implemented in the future.
Collapse
Affiliation(s)
- Vahid Salari
- Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
- Quantum Biology Laboratory, Howard University, Washington, DC, United States
| | | | - Erhan Saglamyurek
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Loganovsky KM, Fedirko PA, Marazziti D, Kuts KV, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV, Malinyak AV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT: PART II - RADIATION CEREBRO/OPHTALMIC EFFECTS IN CHILDREN, PERSONS EXPOSED IN UTERO, ASTRONAUTS AND INTERVENTIONAL RADIOLOGISTS. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:57-97. [PMID: 34965543 DOI: 10.33145/2304-8336-2021-26-57-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ionizing radiation (IR) can affect the brain and the visual organ even at low doses, while provoking cognitive, emotional, behavioral, and visual disorders. We proposed to consider the brain and the visual organ as potential targets for the influence of IR with the definition of cerebro-ophthalmic relationships as the «eye-brain axis». OBJECTIVE The present work is a narrative review of current experimental, epidemiological and clinical data on radiation cerebro-ophthalmic effects in children, individuals exposed in utero, astronauts and interventional radiologists. MATERIALS AND METHODS The review was performed according to PRISMA guidelines by searching the abstract and scientometric databases PubMed/MEDLINE, Scopus, Web of Science, Embase, PsycINFO, Google Scholar, published from 1998 to 2021, as well as the results of manual search of peer-reviewed publications. RESULTS Epidemiological data on the effects of low doses of IR on neurodevelopment are quite contradictory, while data on clinical, neuropsychological and neurophysiological on cognitive and cerebral disorders, especially in the left, dominant hemisphere of the brain, are nore consistent. Cataracts (congenital - after in utero irradiation) and retinal angiopathy are more common in prenatally-exposed people and children. Astronauts, who carry out longterm space missions outside the protection of the Earth's magnetosphere, will be exposed to galactic cosmic radiation (heavy ions, protons), which leads to cerebro-ophthalmic disorders, primarily cognitive and behavioral disorders and cataracts. Interventional radiologists are a special risk group for cerebro-ophthalmic pathology - cognitivedeficits, mainly due to dysfunction of the dominant and more radiosensitive left hemisphere of the brain, andcataracts, as well as early atherosclerosis and accelerated aging. CONCLUSIONS Results of current studies indicate the high radiosensitivity of the brain and eye in different contingents of irradiated persons. Further research is needed to clarify the nature of cerebro-ophthalmic disorders in different exposure scenarios, to determine the molecular biological mechanisms of these disorders, reliable dosimetric support and taking into account the influence of non-radiation risk factors.
Collapse
Affiliation(s)
- K M Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Str., Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - A V Malinyak
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| |
Collapse
|
11
|
Zohdi H, Scholkmann F, Wolf U. Individual Differences in Hemodynamic Responses Measured on the Head Due to a Long-Term Stimulation Involving Colored Light Exposure and a Cognitive Task: A SPA-fNIRS Study. Brain Sci 2021; 11:54. [PMID: 33466405 PMCID: PMC7824905 DOI: 10.3390/brainsci11010054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
When brain activity is measured by neuroimaging, the canonical hemodynamic response (increase in oxygenated hemoglobin ([O2Hb]) and decrease in deoxygenated hemoglobin ([HHb]) is not always seen in every subject. The reason for this intersubject-variability of the responses is still not completely understood. This study is performed with 32 healthy subjects, using the systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach. We investigate the intersubject variability of hemodynamic and systemic physiological responses, due to a verbal fluency task (VFT) under colored light exposure (CLE; blue and red). Five and seven different hemodynamic response patterns were detected in the subgroup analysis of the blue and red light exposure, respectively. We also found that arterial oxygen saturation and mean arterial pressure were positively correlated with [O2Hb] at the prefrontal cortex during the CLE-VFT independent of the color of light and classification of the subjects. Our study finds that there is substantial intersubject-variability of cerebral hemodynamic responses, which is partially explained by subject-specific systemic physiological changes induced by the CLE-VFT. This means that both subgroup analyses and the additional assessment of systemic physiology are of crucial importance to achieve a comprehensive understanding of the effects of a CLE-VFT on human subjects.
Collapse
Affiliation(s)
- Hamoon Zohdi
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; (H.Z.); (F.S.)
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; (H.Z.); (F.S.)
- Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; (H.Z.); (F.S.)
| |
Collapse
|
12
|
Piao D. On the stress-induced photon emission from organism: I, will the scattering-limited delay affect the temporal course? SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Loganovsky KN, Marazziti D, Fedirko PA, Kuts KV, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Mucci F, Zdorenko LL, Della Vecchia A, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV. Radiation-Induced Cerebro-Ophthalmic Effects in Humans. Life (Basel) 2020; 10:41. [PMID: 32316206 PMCID: PMC7235763 DOI: 10.3390/life10040041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to ionizing radiation (IR) could affect the human brain and eyes leading to both cognitive and visual impairments. The aim of this paper was to review and analyze the current literature, and to comment on the ensuing findings in the light of our personal contributions in this field. The review was carried out according to the PRISMA guidelines by searching PubMed, Scopus, Embase, PsycINFO and Google Scholar English papers published from January 2000 to January 2020. The results showed that prenatally or childhood-exposed individuals are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. In adulthood and medical/interventional radiologists, the most frequent IR-induced ophthalmic effects include cataracts, glaucoma, optic neuropathy, retinopathy and angiopathy, sometimes associated with specific neurocognitive deficits. According to available information that eye alterations may induce or may be associated with brain dysfunctions and vice versa, we propose to label this relationship "eye-brain axis", as well as to deepen the diagnosis of eye pathologies as early and easily obtainable markers of possible low dose IR-induced brain damage.
Collapse
Affiliation(s)
- Konstantin N. Loganovsky
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Donatella Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
| | - Pavlo A. Fedirko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Kostiantyn V. Kuts
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Katerina Y. Antypchuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Iryna V. Perchuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Tetyana F. Babenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Tetyana K. Loganovska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Olena O. Kolosynska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - George Y. Kreinis
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Marina V. Gresko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Sergii V. Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Federico Mucci
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
- Dipartimento di Biochimica Biologia Molecolare, University of Siena, 53100 Siena, Italy
| | - Leonid L. Zdorenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Alessandra Della Vecchia
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
| | - Natalia A. Zdanevich
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Natalia A. Garkava
- Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine, 9 Vernadsky Street, 49044 Dnipro, Ukraine;
| | - Raisa Y. Dorichevska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Zlata L. Vasilenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Victor I. Kravchenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Nataliya V. Drosdova
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| |
Collapse
|
14
|
An Experimental Investigation of Ultraweak Photon Emission from Adult Murine Neural Stem Cells. Sci Rep 2020; 10:463. [PMID: 31949217 PMCID: PMC6965084 DOI: 10.1038/s41598-019-57352-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/17/2019] [Indexed: 01/31/2023] Open
Abstract
Neurons like other living cells may have ultraweak photon emission (UPE) during neuronal activity. This study is aimed to evaluate UPE from neural stem cells (NSC) during their serial passaging and differentiation. We also investigate whether the addition of silver nanoparticles (AgNPs) or enhancement of UPE (by AgNPs or mirror) affect the differentiation of NSC. In our method, neural stem and progenitor cells of subventricular zone (SVZ) are isolated and expanded using the neurosphere assay. The obtained dissociated cells allocated and cultivated into three groups: groups: I: cell (control), II: cell + mirror, and III: cell + AgNPs. After seven days, the primary neurospheres were counted and their mean number was obtained. Serial passages continuous up to sixth passages in the control group. Differentiation capacity of the resulting neurospheres were evaluated in vitro by immunocytochemistry techniques. Measurement of UPE was carried out by photomultiplier tube (PMT) in the following steps: at the end of primary culture, six serial cell passages of the control group, before and after of the differentiation for 5 minutes. The results show that neither mirror nor AgNPs affect on the neurosphere number. The UPE of the NSC in the sixth subculturing passage was significantly higher than in the primary passage (P < 0.05). AgNPs significantly increased the UPE of the NSC compared to the control group before and after the differentiation (P < 0.05). Also, the treatment with AgNPs increased 44% neuronal differentiation of the harvested NSCs. UPE of NSC after the differentiation was significantly lower than that before the differentiation in each groups, which is in appropriate to the cell numbers (P < 0.0001). The mirror did not significantly increase UPE, neither before nor after the differentiation of NSC. As a conclusion, NSC have UPE-properties and the intensity is increased by serial passaging that are significant in the sixth passage. The AgNPs increases the UPE intensity of NSC that pushes more differentiation of NSC to the neurons. The mirror was not effective in enhancement of UPE. As a result, UPE measurement may be suitable for assessing and studying the effects of nanoparticles in living cells and neurons.
Collapse
|
15
|
Loganovsky KN, Fedirko PA, Kuts KV, Marazziti D, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT. Part І. THE CONSEQUENCES OF IRRADIATION OF THE PARTICIPANTS OF THE LIQUIDATION OF THE CHORNOBYL ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:90-129. [PMID: 33361831 DOI: 10.33145/2304-8336-2020-25-90-129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, includinginterventional radiological procedures, long-term space flights, and radiation accidents. OBJECTIVE The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. MATERIALS AND METHODS In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM - theleading institution in the field of studying the medical effects of ionizing radiation - were used. RESULTS The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts,radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerativediseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and inchildhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. CONCLUSIONS The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visualsystem and central nervous system (CNS) radiosensitivity is given. The necessity for further international studieswith adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation riskcohorts is justified. The first part of the study currently being published presents the results of the study of theeffects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP).
Collapse
Affiliation(s)
- K N Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - M V Gresko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Street, Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| |
Collapse
|
16
|
Govardovskii VI, Astakhova LA, Rotov AY, Firsov ML. Rejection of the biophoton hypothesis on the origin of photoreceptor dark noise. J Gen Physiol 2019; 151:887-897. [PMID: 30992369 PMCID: PMC6605685 DOI: 10.1085/jgp.201812317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
It has been suggested that retinal “dark light” is caused by photons emitted by the retina itself. The authors show that the “biophoton” radiation from the retina can be detected, but its intensity is ≥100 times lower than necessary to produce the measured physiological noise understood to arise from the spontaneous activation of rhodopsin. Rod photoreceptors of the vertebrate retina produce, in darkness, spontaneous discrete current waves virtually identical to responses to single photons. The waves comprise an irreducible source of noise (discrete dark noise) that may limit the threshold sensitivity of vision. The waves obviously originate from acts of random activation of single rhodopsin molecules. Until recently, it was generally accepted that the activation occurs due to the rhodopsin thermal motion. Yet, a few years ago it was proposed that rhodopsin molecules are activated not by heat but rather by real photons generated within the retina by chemiluminescence. Using a high-sensitive photomultiplier, we measured intensities of biophoton emission from isolated retinas and eyecups of frogs (Rana ridibunda) and fish (sterlet, Acipenser ruthenus). Retinal samples were placed in a perfusion chamber and emitted photons collected by a high-aperture quartz lens. The collected light was sent to the photomultiplier cathode through a rotating chopper so that a long-lasting synchronous accumulation of the light signal was possible. The absolute intensity of bio-emission was estimated by the response of the measuring system to a calibrated light source. The intensity of the source, in turn, was quantified by measuring rhodopsin bleaching with single-rod microspectrophotometry. We also measured the frequency of discrete dark waves in rods of the two species with suction pipette recordings. Expressed as the rate constant of rhodopsin activation, it was 1.2 × 10−11/s in frogs and 7.6 × 10−11/s in sterlets. Approximately two thirds of retinal samples of each species produced reliably measurable biophoton emissions. However, its intensity was ≥100 times lower than necessary to produce the discrete dark noise. We argue that this is just a lower estimate of the discrepancy between the hypothesis and experiment. We conclude that the biophoton hypothesis on the origin of discrete dark noise in photoreceptors must be rejected.
Collapse
Affiliation(s)
- Victor I Govardovskii
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Science, St. Petersburg, Russia
| | - Luba A Astakhova
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Science, St. Petersburg, Russia
| | - Alexander Yu Rotov
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Science, St. Petersburg, Russia
| | - Michael L Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
17
|
White OB, Clough M, McKendrick AM, Fielding J. Visual Snow: Visual Misperception. J Neuroophthalmol 2018; 38:514-521. [DOI: 10.1097/wno.0000000000000702] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|